Генератор импульсов с регулируемой скважностью и частотой

Генератор импульсов с независимым регулированием частоты и скважности

Не так давно мне потребовалось собрать генератор прямоугольных импульсов со сравнительно мощным выходом и плавным ручным регулированием частоты и скважности. Имея некоторый опыт, я сразу решил, что основой генератора должна стать микросхема-таймер NE555 (КР1006ВИ1). Её выпускают не один десяток лет, она дёшева, надежна, имеет отличные характеристики и легко согласуется с логическими микросхемами структуры КМОП и ТТЛ. Напряжение питания таймера может лежать в пределах от 5 до 15 В, а выход выдерживает ток нагрузки до 200 мА.

К сожалению, поиск в Интернете подходящей схемы генератора не дал результата. Все найденные страдали одним и тем же недостатком — при изменении частоты менялась и скважность выходных импульсов. Или же регулировка скважности плавная, а частота — ступенчатая, с помощью переключателя. В результате нужный генератор был разработан самостоятельно.

Как известно, в таймере NE555 имеются два компаратора напряжения. Порог срабатывания одного из них (условно верхнего) без подключения дополнительных резисторов равен 2/3 напряжения питания, а второго (нижнего) — в два раза меньше. Напряжение на времязадающем конденсаторе при работе генератора колеблется между этими порогами. Для изменения скважности известен классический приём — подать напряжение с выхода микросхемы через разнонаправленные диоды на крайние выводы переменного резистора, регулирующего скважность, а его движок соединить с времязадающим конденсатором. При такой регулировке частота импульсов не изменяется, так как сумма сопротивлений резисторов, через которые заряжается и разряжается конденсатор, остаётся постоянной.

Но как плавно регулировать частоту, не изменяя скважность? Я решил делать это, управляя разностью порогов срабатывания компараторов. Чем она меньше, тем меньше при прочих равных условиях уходит времени на перезарядку конденсатора от одного порога до другого и обратно, тем выше становится частота импульсов.

В микросхеме NE555 верхнее пороговое напряжение выведено на вывод 5, а для нижнего внешний вывод, к сожалению, не предусмотрен. Если подключить между выводом 5 и общим проводом переменный резистор, он будет одновременно регулировать оба порособрать генератор прямоугольных импульсов со сравнительно мощным выходом и плавным ручным регулированием частоты и скважности. Имея некоторый опыт, я сразу решил, что основой генератора должна стать микросхема-таймер NE555 (КР1006ВИ1). Её выпускают не один десяток лет, она дё-

га. Однако нижний останется равным половине верхнего, «отдаляясь» от плюса напряжения питания генератора медленнее, чем верхний порог «приближается» к его минусу. Это сказывается на относительной скорости нарастания и спада напряжения на конденсаторе и приводит к изменению скважности импульсов при регулировке частоты.

Проблему удаётся решить, собрав генератор по схеме, изображённой на рисунке. Здесь внутренний нижний компаратор таймера DA2 заменён внешним, собранным на отдельной микросхеме DA1. Его неинвертирую-щий вход соединён с времязадающим конденсатором С1, а к инвертирующему входу подключён делитель напряжения из резисторов R2, R3, R6-R8, задающий порог срабатывания. При разомкнутой цепи переменного резистора R7 или при его очень большом сопротивлении порог срабатывания компаратора DA1 точно такой же, как у отключённого внутреннего компаратора таймера DA2 — 1/3 напряжения питания. Этого равенства добиваются подстроенным резистором R3. Уменьшая сопротивление переменного резистора R7, симметрично относительно половины напряжения питания сближают пороги верхнего компаратора таймера DA2 и внешнего компаратора DA1. В результате частота импульсов растёт, а их скважность, установленная переменным резистором R4, остаётся неизменной.

Нужно сказать, что в первом варианте генератора, схему которого я опубликовал на форуме интернет-портала KAZUS.RU http://kazus.ru/forums/ showthread.php?t=94852, резистор R6 отсутствует. Но, как выяснилось, без него не удаётся добиться полной симметрии порогов, мешает имеющийся внутри таймера соединённый с его выводом 5 делитель напряжения, формирующий из верхнего порога нижний. Резистор R6, сопротивление которого равно сумме сопротивлений резисторов этого делителя, компенсирует его влияние, делая симметричной полную схему формирования порогов.

Субъективно качество балансировки можно оценить, подключив между выводом 3 таймера и общим проводом вольтметр постоянного напряжения. Его показания должны зависеть только от положения переменного резистора R4. При регулировке частоты переменным резистором R7 они изменяться не должны. Этого добиваются с помощью подстроенного резистора R3. Если частота импульсов настолько низка, что стрелка вольтметра колеблется им в такт, следует подключить вольтметр к таймеру через интегрирующую RC-цепь с достаточно большой постоянной времени или временно повысить частоту импульсов, установив конденсатор С1 меньшей ёмкости.

При указанных на схеме номиналах элементов и напряжении питания 15 В переменный резистор R7 регулирует частоту импульсов приблизительно от 50 до 830 Гц. Однако снижение напряжения питания до 5 В ведёт к уменьшению частоты почти в два раза. В связи с этим желательно питать генератор стабилизированным напряжением.

Нагрузочная способность выхода таймера NE555 позволяет напрямую управлять довольно мощными исполнительными устройствами и ключевыми элементами. Это обстоятельство, а также возможность независимого регулирования частоты и скважности может обусловить широкий спектр применения генератора.

Автор: П. Галашевский, г. Херсон, Украина

Мнения читателей
  • Анатолий / 04.05.2021 — 18:43

Повелся как и другие на заголовок, и разочаровался. К сожалению автор слукавил, так случается в интернете часто. Выдают желаемое за действительное. Схема работает, но при регулировке частоты скважность (т.е. коэффициент заполнения) убегает. Соответственно происходит аналогичное и при регулировке скважности. Все смотрел используя осциллограф и частотометр. До этого опробовал различные варианты на NE555 и на различной логике, порядка более двух десятков схем, все без толку. Будем искать.

Саша 24 / 07.04.2021 — 11:01

Ещё один ген с огромной скважностью https://gorchilin.com/articles/scheme/short_pulse_generator_2

Андрей / 08.06.2017 — 22:13

Две микросхемы — уже увеличение габаритов устройства

Михаил / 20.03.2016 — 21:58

2 — инверсный выход, полагаю.

Александр / 20.10.2014 — 20:47

Люди добые допомогите хто чем может : частота нужна до 5 МегаГерц на генераторе прямоугольных импульсов минимальной длительности регулируемой скважности , для управления транзисторным ключём.Дома горы металолома и не знаю что куда и для чего , но радимантажник .Может на транзисторах можно сделать.

Следопыт. / 12.10.2014 — 14:42

Тоже нужен ген.пр.имп. Пол интернета перевернул, изготовил по рекомендуемым схемам три ген. и ничего путнего из них не выдавил, получаю на выходе, самое лучшее трапецию со скругленными углами, либо узор отдаленно напоминающий ее. Схемы я конечно читаю, но в электронике не совсем силен. Но когда смотрю на подобные схемы появляется мысль, что их выкладывают на форум вообще дилетанты. Думаю придется обратить внимание на более сложные схемы.

владимир / 14.04.2014 — 09:34

в80годы была публикация цыфрового фильтра построенного наттл логике к155ла3 суть втом что любая частота есть опроксимация длительности имея двапараметра длительности можно фиксировать скважность меняя эти параметры можно управлять скважностью причем изменение частоты не приводитк изменению скважности схема состоит из двух корпусов ла 3 и ви1 как задающий гениратор с уважением ко всем кто творит внастоящее время работаю над темой влияние низких потенциалов на рост растений вчасности картофеля за 20 дней урожай 300килограм с1кв метра в теплице яживу вказахстане 87013535332 звоните

алексей / 25.02.2014 — 15:20

мое мнение , если бы открытие нижнего компаратора происходило быстрей или медленней тогда бы при обычном запуске таймера импульсы были бы уже не симметричны , а такого же не происходит . я собирал данный девайс который на сайте ,но увы он близко не рабочий . на частое 400 герц при регулировки скважности частота уходит на 100 герц вверх или вниз . проверено на мультиметре и на осциллографе .

Алексей / 20.02.2014 — 20:09

собрал данный генератор . ничего подобного что скважность независимая с частотой. при регулировки скважности частота разъезжаетсяесли частота 500 герц то она уезжает на 100 . или этонормально ?

Алекс / 10.01.2013 — 00:21

«К сожалению, поиск в Интернете подходящей схемы генератора не дал результата. Все найденные страдали одним и тем же недостатком — при изменении частоты менялась и скважность выходных импульсов.»»Но как плавно регулировать частоту, не изменяя скважность?» (скорее всего на высоких частотах?)а меня наоборот проблемка — меняешь скважность — идут изменения в частоте (один резистор через два встречных диода на 55 микрухе) в пределах нескольких десятков герцНапример, при меандре — 8Гц, ползунок влево — 18Гц, вправо — 25Гц. В данной схеме такая проблема решена?СПСБ.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Очень простой генератор из ардуины.

  • Форумы
  • Мастерская
  • Проекты участников
  • Оборудование

ТехнарьКто

Иногда бывает нужно подать сигнал определённой частоты, а специального устройства под рукой нету. Благодаря появлению микроконтроллеров теперь можно при необходимости хоть на коленке в поле сделать генератор. Вот скетч для генератора с регулируемой частотой, пользуюсь давно и успешно.

Генератор частоты от 1 Гц до 8 000 000 Гц. Вырабатывает однополярный меандр со скважность 2. По русски это значит длительность импульса и длительность паузы между импульсами равны, а сигнал имеет прямоугольную форму.

Вопрос: Что такое генератор?
Ответ: Это устройство которое преобразует энергию источника питания в энергию выходных электрических импульсов заданной частоты и формы.

Вопрос: А мне то это зачем?
Ответ: Очень хороший вопрос, ответ на который Вы вряд ли найдете в интернете. Вы сможете проверить работоспособность усилителя. Проверить диапазон воспроизводимых усилителем частот. Проверить целостность динамика, даже без усилителя с помощью только этого генератора. Найти обрыв силового провода в проводке, обрыв телефонного провода, обрыв в электропроводке автомобиля. Правда кроме генератора нужен будет еще и детектор сигнала. Для поиска обрыва проводки генератор присоединяют к исследуемой линии, а частота генератора лежит в пределах килогерца. Поиск производится детектором. По резкому уменьшения громкости звука, определяется место разрыва. Генератор позволит проверить работу микропроцессора ардуины или PIC контроллера при использовании его как тактового. Можно сделать звуковую сирену с тональностью сигнала который Вам нравиться. Сделать передатчик с использованием генератора в качестве задающего несущую частоту. Настроить фильтр низкой частоты, настроить фильтр высокой частоты, настроить режекторный фильтр. Фильтры используют в цветомузыке, в каскадах радиоприемников, в импульсной технике для защиты от помех, для очистки информационного сигнала от сопутствующих работе помех. Подать сигнал низкой частоты на устройства работающие на шине I2C и посмотреть обмен информации хоть с помощью вольтметра. С помощью генератора можно измерять индуктивность и емкость с очень высокой точностью. Да и вообще сейчас трудно назвать современное электронное устройство в котором нет генератора и для быстрой проверки работы устройства не требовался бы внешний генератор, хотя бы такой. Кроме этого при использовании генератора показывающего все знаки неизменно возникнет вопрос, почему во всех генераторах частота немного отличается. Поэтому этот генератор позволит заинтересоваться вопросом точности и что же такое ppm, ppb зачем и когда это нужно.

Подначка: Да я программу генератора на компьютере запущу. Че мне заморачиватся.
Ответ: Программы генераторов на компьютере для звуковых карт ограничены звуковой частотой. Мне будет очень любопытно узнать, как вы с генерируете сигнал хотя бы в мегагерц 1 000 000 Гц с помощью звуковой карты. С помощью этого генератора — легко.

Теперь Вы знаете зачем нужен генератор. Практические примеры использования выходят за рамки данного сообщения. Здесь только про создание самого генератора.

Итак схема.

Я же обещал очень простой генератор

На выход сигнала можно смело цеплять динамик для проверки его работоспособности. Без конденсатора можно сразу подавать сигнал на микроконтроллеры и электронные схемы у которых 5V питание.

Из терминала послать требуемую частоту в герцах. Только цифру. В ответ в терминал будет выведена частота в герцах, а на выходе генератора появиться сигнал с частотой как в терминале.
Пример для частоты 200 кГц. В терминале набирал 200000

Пример для частоты 8 мегагерц. В терминале набирал 8000000

Меандр кривой из за малого частотного диапазона осциллографа. Но это совершенно другой вопрос.

Надо понимать, что выводимая в терминале частота будет отличаться от реальной. Выводимая в терминале частота была бы при идеальном кварце работающем точно на частоте 16 000 000 Гц. У ардуин такого не бывает. Если кому интересно, то могу написать о кварцевых резонаторах. Для понимания, почему в ардуино не бывает точных кварцев.

PS Поскольку в целом я далек от программирования но весьма не плохой электроник, вынужденный современностью разбираться в коде разных программ, то по большей части использую приборы которые кто то уже делал. Зачастую модифицирую, иногда и очень сильно, под свои потребности и использую. При этом считаю, что соблюдение авторства все равно должно быть. Код обычно беру из общедоступных источников, когда авторы сами выложили для использования другими. Поскольку найти конструкции бывает затруднительно, а при повторении конструкций бывают малопонятные особенности, о которых Вы можете и не найти информации, то считаю, что выложить и подробно описать для чего это надо и как заставить работать ту или иную конструкцию — это нормально.

Генератор электрических импульсов на таймере 555

Электрический импульс — это кратковременный всплеск напряжения или силы тока. То есть это такое событие в цепи, при котором напряжение резко повышается в несколько раз, а затем так же резко падает к исходной величине. Самый понятный пример — электрический импульс, заставляющий наше сердце биться. Самое же большое количество импульсов возникает у нас в нервных клетках головного и спинного мозга. Мы мыслим и решаем уроки благодаря электрическим импульсам!

А что в электронике? В электронике импульсы применяются повсеместно. Например, в микроконтроллерах или даже в полноценных процессорах домашнего компьютера электрические импульсы задают ритм его работы. Они еще называются тактовыми, или синхро-импульсами. Порой быстродействие вычислительных машин сравнивают именно при помощи значений тактовой частоты.

Все данные внутри электронных устройств тоже передаются при помощи импульсов. Наш интернет, проводной и беспроводной, сотовая связь и даже пульт от телевизора — все используют импульсный сигнал. Попробуем выполнить несколько заданий и на собственном опыте понять особенности генерации электрических импульсов. А начнем мы со знакомства с их важными характеристиками.

1. Период и скважность импульсного сигнала

Представим себе, что мы готовимся к встрече Нового Года и нам просто необходимо сделать мигающую гирлянду. Поскольку мы не знаем, как заставить её мигать самостоятельно, сделаем гирлянду с кнопкой. Будем сами нажимать на кнопку, соединяя тем самым цепь гирлянды с источником питания и заставляя лампочки зажигаться.

Принципиальная схема гирлянды с ручным управлением будет выглядеть так:

Внешний вид макет

Собираем схему и проводим небольшой тест. Попробуем управлять гирляндой согласно нехитрому алгоритму:

  1. нажимаем на кнопку;
  2. ждем 1 секунду;
  3. отпускаем кнопку;
  4. ждем 2 секунды;
  5. переходим к пункту 1.

Это алгоритм периодического процесса. Нажимая на кнопку по алгоритму мы тем самым генерируем настоящий импульсный сигнал! Изобразим на графике его временную диаграмму.

У данного сигнала мы можем определить период повторения и частоту. Период повторения (T) — это отрезок времени, за который гирлянда возвращается в исходное состояние. На рисунке хорошо виден этот отрезок, он равен трем секундам. Величина обратная периоду повторения называется частотой периодического сигнала (F). Частота сигнала измеряется в Герцах. В нашем случае:

F = 1/T = 1/3 = 0.33 Гц

Период повторения можно разбить на две части: когда гирлянда горит и когда она не горит. Отрезок времени, в течение которого гирлянда горит называется длительностью импульса (t).

А теперь самое интересное! Отношение периода повторения (T) к длительности импульса (t) называется скважностью.

Скважность нашего сигнала равна S = 3/1 = 3. Скважность величина безразмерная.

В англоязычной литературе принят другой термин — коэффициент заполнения (Duty cycle). Это величина, обратная скважности.

В случае нашей гирлянды коэффициент заполнения равен:

D = 1 / 3 = 0.33(3) ≈ 33%

Этот параметр более нагляден. D = 33% означает, что треть периода занята импульсом. А, например, при D = 50% длительность высокого уровня сигнала на выходе таймера будет равна длительности низкого уровня.

2. Генерация импульсного сигнала при помощи микросхемы 555

Теперь попробуем заменить человека и кнопку, ведь мы не хотим весь праздник включать и выключать гирлянду каждые 3 секунды.

В качестве автоматического генератора импульсов используем очень известную микросхему семейства 555. Микросхема 555 — это генератор одиночных или периодических импульсов с заданными характеристиками. По-другому данный класс микросхем называют таймерами.

Существуют разные модификации таймера 555, разработанные разными компаниями: КР1006ВИ1, NE555, TLC555, TLC551, LMC555. Как правило, все они имеют одинаковый набор выводов.

Также производители выделяют два режима работы таймера: одновибратор и мультивибратор. Нам подойдет второй режим, именно в нем таймер будет непрерывно генерировать импульсы с заданными параметрами.

Для примера, подключим к таймеру 555 один светодиод. Причем, используем вариант, когда положительный вывод светодиода соединяется с питанием, а земля к таймеру. Позже будет понятно, почему мы делаем именно так.

Принципиальная схема

Внешний вид макета

Примечание. Конденсатор C2 в схеме можно не использовать.

В этой схеме есть три компонента без номиналов: резисторы Ra и Rb, а также конденсатор C1 (далее просто C). Дело в том, что именно с помощью этих элементов настраиваются нужные нам характеристики генерируемого импульсного сигнала. Делается это с помощью несложных формул, взятых из технической документации к микросхеме.

T = 1/F = 0.693*(Ra + 2*Rb)*C; (1)

t = 0.693*(Ra + Rb)*C; (2)

Здесь F — частота сигнала; T — период импульса; t — его длительность; Ra и Rb — искомые сопротивления. Исходя из этих формул, коэффициент заполнения не может быть меньше 50% (иначе мы получим отрицательное значение сопротивления). Вот это новость! А что же нам делать с гирляндой? Ведь согласно нашей постановке, коэффициент заполнения импульсного сигнала должен быть непременно 33%.

Чтобы обойти это ограничение имеется два способа. Первый способ заключается в использовании другой схемы подключения таймера. Существуют более сложные схемы, которые позволяют варьировать параметр D во всем диапазоне от 0 до 100%. Второй способ не требует переделки схемы. Мы просто-напросто инвертируем выход таймера!

Собственно, в предложенной выше схеме мы это уже и сделали. Вспомним, что катод светодиода мы соединили с выводом таймера. В этой схеме светодиод будет гореть, когда на выходе таймера будет низкий уровень.

Раз так, то нам нужно настроить сопротивления Ra и Rb схемы так, чтобы коэффициент заполнения D был равен 66.6%. Учитывая, что T = 3 сек, а D = 0.66, получаем:

Ra = 3*1.44*(2*0.66 — 1)/0.0001 = 13824 Ом

Rb = 3*1.44*(1-D)/0.0001 = 14688 Ом

На самом деле, если мы будет использовать более точные значения D, то получим Ra = Rb = 14400 Ом. Вряд ли мы найдем резистор с таким номиналом. Скорее всего нам потребуется поставить последовательно несколько резисторов, например: один резистор на 10 КОм и 4 штуки на 1 КОм. Для большей точности можем добавить еще два резистора по 200 Ом.

В результате должно получиться что-то подобное:

В этой схеме используются резисторы на 15 КОм.

3. Подключение группы светодиодов к таймеру 555

Теперь, когда мы научились задавать нужный ритм, соберем небольшую гирлянду. В новой схеме пять светодиодов будут включаться на 0.5 сек каждую секунду. Для такого ритма Ra = 0, Rb = 7.2 кОм. То есть, вместо резистора Ra мы можем поставить перемычку.

Выход микросхемы 555 слишком слабый для того, чтобы одновременно зажечь 5 светодиодов. А ведь в настоящей гирлянде их может быть штук 15, 20 и более. Чтобы решить эту проблему, используем биполярный транзистор, работающий с режиме электронного ключа. Возьмем самый распространенный NPN транзистор 2N2222. Также в этой схеме можно использовать полевой N-канальный транзистор, например 2N7000.

Нашим светодиодам потребуется токозадающий резистор. Суммарный ток пяти параллельно соединенных светодиодов должен быть равен I = 20 мА*5 = 100 мА. Напряжение питания всей схемы 9 Вольт. На светодиоде красного цвета напряжение падает на 2 Вольта. Таким образом закон ома на данном участке цепи имеет вид:

отсюда R2 = 7В/0.1А = 70 Ом.

Округлим сопротивление до 100 Ом, которое можно получить параллельным соединением двух резисторов на 200Ом. А можно и вовсе оставить один резистор на 200Ом, просто светодиоды будут гореть немного тусклее.

Принципиальная схема

Внешний вид макета

Примечание. Конденсатор C2 в схеме можно не использовать.

Собираем схему, подключаем батарейку и наблюдаем за результатом. Если все работает как надо, закрепим полученные знания, сделав несколько забавных устройств.

Задания

  1. Генератор звука. В схеме гирлянды заменить группу светодиодов на пьезодинамик. Увеличить частоту звука, например, до 100 Гц. Если поднять частоту до 15 кГц, то можно будет отпугивать комаров!
  2. Железнодорожный светофор. Подключить к таймеру два светодиода таким образом, чтобы один соединялся с таймером катодом, а второй анодом. Установить частоту импульсов — 1 Гц.

К размышлению

Как уже говорилось, таймер 555 — очень популярная микросхема. Это объясняется тем, что большинству электронных устройств свойственны периодические процессы. Любой звук — это периодический процесс. ШИМ сигнал, управляющий скоростью двигателя — тоже периодический, причем с изменяющимся коэффициентом заполнения. И как уже говорилось, работа любого микроконтроллера и процессора основана на тактовом сигнале, имеющем очень точную частоту.

На следующем уроке мы сделаем бинарные часы с помощью таймера и двоичного счетчика. Будет немного сложнее, но интереснее!

Генератор импульсов с регулируемой скважностью и частотой

9zip.ru Катушки Теслы Генератор на TL494 с регулировкой частоты и скважности

Очень полезным устройством при проведении экспериментов и настроечных работ является генератор частоты. Требования к нему невелики, нужны лишь:

  • регулировка частоты (периода следования импульсов)
  • регулировка скважности (коэффициент заполнения, длина импульсов)
  • широкий диапазон

Этим требованиям вполне удовлетворяет схема генератора на известной и распространённой микросхеме TL494. Её и многие другие детали для этой схемы можно найти в ненужном компьютерном блоке питания. Генератор имеет силовой выход и возможность раздельного питания логической и силовой частей. Логическую часть схемы можно запитать и от силовой, также её можно питать от переменного напряжения (на схеме имеется выпрямитель).

Диапазон регулировки частоты генератора чрезвычайно высок — от десятков герц до 500 кГц, а в некоторых случаях — и до 1 МГц, зависит от микросхемы, у разных производителей разные реальные значения максимальной частоты, которую можно «выжать».


Перейдём к описанию схемы:

— питание цифровой части схемы, постоянным и переменным напряжением соответственно, 16-20 вольт.
Vout — напряжение питания силовой части, именно оно будет на выходе генератора, от 12 вольт. Чтобы запитать цифровую часть схемы от этого напряжения, необходимо соединить Vout и Пит± с учётом полярности (от 16 вольт).
OUT(+/D) — силовой выход генератора, с учётом полярности. + — плюс питания, D — drain полевого транзистора. К ним подключается нагрузка.
G D S — винтовая колодка для подключения полевого транзистора, который выбирается по параметрам в зависимости от ваших требований к частоте и мощности. Разводка печатной платы выполнена с учётом минимальной длины проводников к выходному ключу и необходимой их ширины.

Rt — переменный резистор управления диапазоном частот генератора, его сопротивление необходимо выбрать под ваши конкретные требования. Онлайн калькулятор расчёта частоты TL494 прилагается ниже. Резистор R2 ограничивает минимальное значения сопротивления времязадающего резистора микросхемы. Его можно подобрать под конкретный экземпляр микросхемы, а можно ставить таким, как на схеме.
Ct — частотозадающий конденсатор, отсыл, опять же, к онлайн калькулятору. Позволяет задать диапазон регулировки под ваши требования.
Rdt — переменный резистор для регулировки скважности. Резистором R1 можно точно подогнать диапазон регулировки от 1% до 99%, также вместо него можно поставить вначале перемычку.

Ct, нФ:
R2, кОм:
Rt, кОм:

Несколько слов о работе схемы. Подачей низкого уровня на 13 вывод микросхемы (output control) она переведена в однотактный режим. Нижний по схеме транзистор микросхемы нагружен на резистор R3 для создания выхода для подключения к генератору измерителя частоты (частотометра). Верхний же транзистор микросхемы управляет драйвером на комплиментарной паре транзисторов S8050 и S8550, задача которого — управлять затвором силового выходного транзистора. Резистор R5 ограничивает ток затвора, его значение можно менять. Дроссель L1 и конденсатор ёмкостью 47n образую фильтр для защиты TL494 от возможных помех, создаваемых драйвером. Индуктивность дросселя, возможно, следует подобрать под ваш диапазон частот. Следует отметить, что тразнисторы S8050 и S8550 выбраны не случайно, так как они имеют достаточную мощность и скорость, что обеспечит необходимую крутизну фронтов. Как видите, схема предельно проста, и, в то же время, функциональна.

Переменный резистор Rt следует выполнить в виде двух последовательно соединённых резисторов — однооборотного и многооборотного, если вам нужна плавность и точность регулировки частоты.


В качестве силового транзистора можно использовать практически любые полевые транзисторы, подходящие по напряжению, току и частоте. Это могут быть: IRF530, IRF630, IRF640, IRF840.

Чем меньше сопротивление транзистора в открытом состоянии, тем меньше он будет нагреваться при работе. Тем не менее, наличие радиатора на нём обязательно.

Собрано и проверено по схеме, которую предоставил flyer.

Генераторы импульсов на элементах ТТЛ, КМОП и ЭСЛ

В принципе, электрических колебаний представляет собой один или несколько усилительных каскадов, охваченных обратной связью с частотно-зависимыми сопротивлениями, которые и обеспечивают генерацию на требуемой частоте. В качестве частотіно-задающих элементов генераторов используют RC, LC, RLC-цепи, а также пьезокерамические и кварцевые резонаторы.

Схема генератора с RC частотно-задающей цепью и временные диаграммы, поясняющие его работу, приведены на рис. 24. Принцип его работы основан на процессе зарядки-разрядки конденсатора С через резистор R. Через этот резистор осуществляется ООС по постоянному току, а через конденсатор—ПОС по переменному. Предположим, что в начальный момент конденсатор разряжен, на выходе элемента DD1.2 действует напряжение низкого уровня — начнется заряд конденсатора (рис. 24, участок а). По мере его зарядки напряжение на нем увеличивается, а на выходе элемента DDL1—уменьшается (рис. 24, участок б). Когда напряжение на выходе элемента DD1.1 станет соответствовать низкому уровіню, выходное напряжение элемента DD1.2 начнет увеличиваться. Этот прирост напряжения через конденсатор поступает на вход элемента DD1.1, что приводит к резкому уменьшению его выходного напряжения, значит, к резкому увеличению выходного напряжения элемента DD1.2, что, в свою очередь, приводит к резкому уменьшению напряжения на выходе элемента DD1.1 и т. д. Таким образом, устройство скачком переключается в другое состояние — с напряжением высокого уровня на выходе элемента DD1.2 (рис. 24, участок в),

С этого момента начнется перезаряд конденсатора, в результате «его напряжение на входе элемента DDil.l уменьшается; а на его выходе — увеличивается (рис. 24, участок г). Когда напряжение на выходе элемента DD1.1 достигает напряжения высокого уровня, устройство скачком переключается в исходное состояние и процесс повторяется.

В таком генераторе можно использовать элементы ТТЛ, КМОП и ЭСЛ, но, в зависимости от конкретных элементов, на нее накладываются определенные ограничения. Для элементов КМОП сопротивление резистора может быть от единиц килоом до десятков мегаом, а емкость конденсатора — от десятков пикофарад до сотен микрофарад, а вот для элементов ТТЛ сопротивление резистора ограничено более узкими рамками, о чем уже говорилось ранее.

Рис. 24. Генератор с RC частотно-задающей цепью (а) и графики (б), поясняющие его работу

Частоту , генерации можно определить по приближенной формуле

Учитывая, что элементы КМОП имеют ограничения по частотному диапазону, рекомендовать их можно для генераторов на частоты до 2. 4 МГц. Для более высокочастотных генераторов следует применять элементы ТТЛ или ЭСЛ. Перестройку частоты генераторов можно осуществлять с помощью переменных резистора или конденсатора. Температурная стабильность таких генераторов невысока и для ее повышения используют конденсаторы с определенным ТКЕ.

Устройство, собранное по схеме рис. 24, генерирует прямоугольные импульсы со скважностью примерно равной 2 (скважность — отношение периода следования импульсов к их длительности). Если же скважность импульсов необходимо изменять, сохраняя при этом частоту их следования, надо синхронно изменять цепи зарядки и разрядки конденсатора. Как это реализовать, показано на рис. 26. Здесь для регулировки скважности импульсов используют потенциометр R1. В среднем положении его движка, когда время зарядки и разрядки конденсатора СІ примерно одинаково, скважность близка к 2. При перемещении движка в ту или иную сторону время зарядки будет, например, уменьшаться, а разрядки — увеличиваться, это приведет к изменению скважности, при этом частота следования будет изменяться незначительно. В таком генераторе можно регулировать скважность примерно от 1,01 до 100.

Если необходимо получить сигнал синусоидальной формы или повысить стабильность частоты, то в часготно-задающей цепи надо использовать LC-контур, который будет выполнять еще и фильтрующую функцию, подавляя гармонические составляющие высших порядков. Схема такого варианта генератора [8] приведена на рис. 26,а, его удобно использовать для частот более 3 . 5 МГц. Сигнал снимают с катушки L2, он имеет синусоидальную форму. Катушка U1 имеет отвод от середины, а соотношение витков этих катушек должно быть как 1 :7. Схема генератора на элементе ТТЛ с частогно-задающей цепью на последовательном LC-контуре приведена на рис. 26,б [43].

Простой генератор на элементах КМОП и LC-контуре можно собрать по схеме рис. 27. В нем через резистор R1 и катушку индуктивности L1 осуществляется ООС ло постоянному току, благодаря чему при изменении питающего напряжения обеспечивается устойчивая работа генератора в широких пределах. Так как входное сопротивление элемента составляет сотни килоом — единицы мегаом, он слабо шунтирует контур C1L1C2, поэтому добротность контура будет достаточно большой, что обеспечивает хорошую форму сигнала. Чтобы нагрузка не оказывала существенного влияния на частоту генератора, связь с ней осуществляется через конденсатор СЗ небольшой емкости.

Рис. 25. Принципиальная схема генератора с регулируемой скважностью импульсов

Общий недостаток описанных выше генераторов—сравнительно невысокая стабильность генерируемой частоты (10-3. 10-4 1/град). Для повышения стабильности применяют пьезокерамические и кварцевые резонаторы, включая их, например, вместо конденсатора в цепи ПОС (см. рис. 24), чем обеспечивают мягкий режим самовозбуждения. Однако при таком способе включения резонаторов возможно возникновение генерации на частотах, отличных от собственной частоты резонатора. Чтобы этого не произошло, используют различные способы фазовой или амплитудной селекции нужной частоты.

На рис. 28 приведена схема генератора с кварцевой стабилизацией частоты в диапазоне 2 . 10 МГц [9, 10]. Здесь конденсаторы С1 и G2 служат для подавления возможной паразитной генерации на частотах, отличных от частоты кварцевого резонатора BQ1. Для устранения влияния нагрузки на частоту генератора применен буферный элемент DD1.3. Настройка заключается в установке генерируемой частоты с помощью подбора емкости конденсатора СЗ. В табл. 2 приведены данные элементов для разных диапазонов частот.

Рис. 26. Принципиальные схемы LC-генераторов на элементах ТТЛ

Для повышения добротности контура емкость конденсатора С2 следует выбирать в 2—4 раза больше емкости конденсатора С1. Частоту генерации можно определить по формуле:

Рис. 27. Принципиальная схема генератора на LC-контуре и элементе КМОП

Рис. 28. Генератор на элементах ТТЛ с кварцевой стабилизацией частоты

Генератор с кварцевой стабилизацией частоты можно собрать всего на одном элементе КМОП (рис. 29). В нем резистор R1 выводит элемент DD1.1 на линейный участок передаточной характеристики. Резистор R2 выполняет одновременно несколько функций: обеспечивает дополнительный сдвиг фаз в цепи ООС по переменному току, предотвращает возможность паразитного самовозбуждения, снижает мощность, рассеиваемую на кварцевом резонаторе, что благотворно сказывается на стабильности частоты, а также ослабляет шунтирующее действие элемента на кварцевый резонатор, что также повышает стабильность частоты. Благодаря этому генератор на частоту 500 кГц, собранный на элементе микросхемы К176ЛА7, имеет нестабильность частоты не более ±0,1 . 0,5-10_6 при изменении напряжения источника питания в пределах ±10 %.

Сопротивление резистора R1 может быть 0,1 . 20 МОм, причем при большем его сопротивлении увеличивается влияние паразитных наводок, а при меньшем — ухудшается стабильность частоты. Сопротивление резистора R2 может быть от единиц до десятков килоом. Конденсаторы С1 и С2 емкостью от нескольких пикофарад до долей микрофарады должны быть с минимально возможным ТКЕ. Для повышения стабильности іна выходе генератора полезно установить буферный каскад на элементе DD1.2.

Рис. 29. Генератор на элементах КМОП с кварцевой стабилизацией частоты

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.