Генератор Тесла
Никола Тесла – один из известнейших ученых в области электроэнергетики и электричества, чье научное наследие до сих пор вызывает многочисленные споры. И если практически реализованные проекты активно используются и известны повсеместно, то некоторые нереализованные до сих пор являются объектами исследований, как серьезными организациями, так и любителями.

Генератор или вечный двигатель?
Большинство ученых отрицает возможность создания генератора на свободной энергии. На это следует возразить тем, что даже в прошлом многие современные достижения также казались невозможными. Дело в том, что наука имеет множество областей, где исследования проведены далеко не полностью. Это особенно касается вопросов физических полей и энергии. Те виды энергии, которые нам знакомы, можно ощутить и измерять. Но ведь нельзя отрицать наличие неизвестных видов только на том основании, что пока не существует методов и приборов для их измерения и преобразования.
Для скептиков любые предложения генераторов, схемы и идеи, основанные на преобразовании свободной энергии, кажутся вечными двигателями, которые работают, не потребляя энергии, да еще способны вырабатывать излишек уже в виде известной энергии, тепловой или электрической.
Здесь не идет речь о вечных двигателях. На самом деле вечный генератор использует свободную энергию, которая в настоящее время пока еще не имеет внятного теоретического обоснования. Чем раньше считался свет? А сейчас он используется для выработки электрической энергии.

Альтернативная энергетика
Сторонники традиционной физики и энергетики отрицают возможность создания работоспособного генератора, оперируя существующими понятиями, законами и определениями. Приводится масса доказательств, что подобные устройства не могут существовать на практике, поскольку противоречат закону сохранения энергии.
Сторонники «теории заговора» убеждены, что расчеты генератора существуют, как и его работающие прототипы, но они не предъявляются науке и широкой общественности, поскольку не выгодны современным энергетическим компаниям и могут вызвать кризис экономики.
Энтузиасты неоднократно делали попытки создания генератора, ими построены немало прототипов, но отчеты о работе почему-то регулярно пропадают или исчезают. Отмечено, что периодически закрываются сетевые ресурсы, посвященные альтернативной энергетике.
Это может свидетельствовать о том, что конструкция в действительности работоспособна, и создать генератор своими руками возможно даже в домашних условиях.
Трансформатор Тесла
Многие путают понятия генератора и трансформатора (катушка) Тесла. Для разъяснений нужно остановиться на этом подробнее. Трансформатор Тесла изучен достаточно и доступен для повторения. Многие производители успешно выпускают различные модели трансформаторов как для практического использования в различных устройствах, так и для демонстрационных целей.
Трансформатор Тесла представляет собой преобразователь электрической энергии с низкого напряжения в высокое. Выходное напряжение может составлять миллионы вольт, но сама конструкция при этом не представляет высокой сложности. Гениальность изобретателя состоит в том, что ему удалось собрать устройство, использующее известные физические свойства электромагнитных полей, но при этом совершенно иным способом. Исчерпывающего теоретического обоснования работы устройства не существует до сих пор.

В основе конструкции лежит трансформатор с двумя обмотками, с большим и малым количеством витков. Самое главное – отсутствует традиционный ферромагнитный сердечник, и взаимосвязь между обмотками получается очень слабой. Учитывая уровень выходного напряжения трансформатора Тесла, можно сделать вывод, что обычная методика расчета трансформатора, даже с учетом высокой частоты преобразования, здесь неприменима.
Генератор Тесла
Иное предназначение имеет генератор. Конструкция генератора также использует трансформатор, подобный высоковольтному. Работая на одинаковом принципе с трансформатором, генератор способен создавать на выходе излишки энергии, значительно превосходящие затраченные на первоначальный запуск устройства. Основная задача состоит в методике изготовления трансформатора и его настройке. Важна точная настройка системы на частоту резонанса. Ситуация осложняется тем, что таких данных не имеется в свободном доступе.
Как сделать генератор
Чтобы собрать генератор Тесла, необходимо совсем немного. В интернете можно найти данные по сборке трансформатора генератора Тесла своими руками и схемы для запуска конструкции. На основе имеющейся информации ниже даны рекомендации, как должна быть выполнена самостоятельная сборка конструкции, и краткая методика настройки.
Трансформатор должен удовлетворять противоречивым требованиям:
- Высокочастотная свободная энергия требует уменьшения габаритов (подобно разнице в размерах телевизионных антенн метрового и дециметровых диапазонов);
- С уменьшением габаритов падает КПД конструкции.
Трансформатор
Вопрос частично решается подбором диаметра и количества первичной обмотки трансформатора. Оптимальный диаметр обмотки составляет 50 мм, поэтому удобно для намотки использовать отрезок пластиковой канализационной трубы соответствующей длины. Экспериментально установлено, что количество витков обмотки должно составлять не менее 800, лучше это количество удвоить. Диметр провода не имеет существенного значения для самодельной конструкции, поскольку ее мощность невелика. Поэтому диаметр может лежать в диапазоне от 0.12 до 0.5 мм. Меньшее значение создаст трудности при намотке, а большее – увеличит габариты устройства.

Длина трубы берется с учетом количества витков и диаметра провода. К примеру, провода ПЭВ-2 0.15 мм диаметр с изоляцией составляет 0.17 мм, суммарная длина обмотки – 272 мм. Отступив от края трубы 50 мм для крепления, сверлят отверстие для крепления начала обмотки, а через 272 мм еще одно – для конца. Запас трубы сверху составляет пару сантиметров. Итого общая длина отрезка трубы будет 340-350 мм.
Для намотки провода его начало продевают в нижнее отверстие, оставляют там запас в 10-20 см и закрепляют скотчем. После того, как обмотка выполнена, ее конец такой же длины продевают в верхнее отверстие и тоже закрепляют.
Важно! Витки обмотки должны плотно прилегать друг к другу. Провод не должен иметь перегибов и петель.
Готовую обмотку обязательно покрывают сверху электротехническим лаком или эпоксидной смолой для исключения сдвига витков.
Для вторичной обмотки нужен более серьезный провод с сечением не менее 10 мм2. Это соответствует проводу с диаметром 3.6 мм. Если есть толще, то так даже лучше.
Обратите внимание! Поскольку система работает на высокой частоте, то, благодаря скин-эффекту, ток распространяется в поверхностном слое провода, поэтому вместо него можно взять тонкостенную медную трубку. Скин-эффект – еще одно оправдание большого диаметра провода вторичной обмотки.
Диаметр витков вторичной обмотки должен быть в два раза больше первичной, то есть 100 мм. Вторичку можно намотать на отрезке канализационной трубы 110 мм или на любом другом простом каркасе. Труба или подходящая болванка нужны только для процесса намотки. Жесткая обмотка в каркасе нуждаться не будет.
Для вторичной обмотки количество витков составляет 5-6. Есть несколько вариантов конструкции вторичной обмотки:
- Сплошная;
- С расстоянием между витками 20-30 мм;
- Конусообразная с теми же расстояниями.
Конусообразная представляет наибольший интерес, поскольку расширяет диапазон настройки (имеет более широкую частотную полосу). Нижний первый виток делается диаметром 100 мм, а верхний доходит до 150-200 мм.
Важно! Необходимо строго выдерживать расстояние между витками, а поверхность провода или трубки нужно сделать гладкими (в лучшем случае отполировать).
Схема запитки
Для первоначального запуска необходима схема, которая подает на трансформатор генератора Тесла импульс энергии. Далее генератор переходит в автоколебательный режим и постоянно во внешнем питании не нуждается.
На сленге разработчиков устройство для запитки именуется «качер». Те, кто знаком с электроникой, знают, что правильное название устройства – блокинг-генератор (ударный генератор). Подобное схемотехническое решение вырабатывает однократный мощный электрический импульс.
Разработано много вариантов блокинг-генераторов, которые делятся на три группы:
- На электронных лампах;
- На биполярных транзисторах;
- На полевых транзисторах с изолированным затвором.
Ламповый электромагнитный генератор на мощных генераторных лампах работает с высокими выходными параметрами, но его конструирование затрудняется наличием комплектующих. Кроме того, требуется не двух,- а трехобмоточный трансформатор, поэтому ламповые блокинг-генераторы в настоящее время встречаются редко.

Самое широкое распространение получили качеры на биполярных транзисторах. Их схемотехника хорошо отработана, настройка и регулировка просты. Используются транзисторы отечественного производства 800-й серии (КТ805, КТ808, КТ819), которые имеют хорошие технические параметры, широко распространены и не вызывают финансовых затруднений.

Распространение мощных и надежных полевых транзисторов сделало возможным конструирование блокинг-генераторов с повышенным КПД благодаря тому, что MOSFET или IGBT транзисторы имеют лучшие параметры по падению напряжения на переходах. Кроме роста КПД, становится менее проблематичной проблема охлаждения транзисторов. Проверенные схемы используют транзисторы IRF740 или IRF840, также недорогие и надежные.

Перед тем, как собрать генератор в готовую конструкцию, еще раз перепроверьте качество изготовления всех комплектующих. Соберите конструкцию и подайте на нее питание. Переход в автоколебательный режим сопровождается наличием напряжения на обмотках трансформатора (на выходе вторички). Если напряжение отсутствует, то необходима настройка частоты блокинг-генератора в резонанс с частотой трансформатора.
Важно! При работе с генератором Тесла необходимо соблюдать повышенную осторожность, поскольку при запуске в первичной обмотке наводится высокое напряжение, способное привести к несчастному случаю.
Применение генератора
Генератор Тесла и трансформатор конструировались изобретателем как универсальные устройства для беспроводной передачи электрической энергии. Никола Тесла неоднократно проводил эксперименты, подтверждающие его теорию, но, к сожалению, следы отчетов по передаче энергии также оказались утеряны или надежно спрятаны, как и многие другие его конструкции. Разработчики только недавно начали конструировать устройства для передачи энергии, но и то на сравнительно малые расстояния (беспроводные зарядные устройства для телефонов – хороший пример).
В эпоху неотвратимого истощения запасов невосполняемых природных ресурсов (углеводородного топлива) разработка и конструирование устройств альтернативной энергетики, в том числе бестопливного генератора, имеет высокое значение. Электрогенератором на свободной энергии при его достаточной мощности можно пользоваться для освещения и отопления домов. Не следует отказываться от исследований, ссылаясь на отсутствие опыта и профильного образования. Многие важные изобретения сделаны людьми, которые были профессионалами в совершенно других областях.
Видео
Генератор Тесла своими руками – схема и последовательность проведения работ
Никола Тесла – известный физик, который всю свою жизнь занимался электричеством. Он разработал множество установок и устройств, которые названы его именем. Одно из них – это генератор Тесла, в основе которого лежит эффект вылетающих стримеров, что очень красиво. Поэтому уважающий себя радиолюбитель обязательно должен один раз собрать этот прибор. Тем более это несложно. Итак, как собрать генератор Тесла своими руками (схема прибора и последовательность его сборки)?

Чтобы упростить поставленную задачу, надо разбить весь процесс на три этапа:
- Сборка вторичной обмотки, она высоковольтная.
- Сборка первичной обмотки (низковольтной).
- Сборка схемы управления.
Первый этап
В основе вторичной обмотки лежит цилиндр, вокруг которого и будет наматываться медный провод. Здесь важно, чтобы цилиндр был изготовлен из диэлектрического материала. Поэтому оптимальный вариант (он же самый простой) – это ПВХ труба. Если говорить о размерах, то 50 мм в диаметре и 30 см длиною – это то, что вам необходимо.
Теперь, что касается медного провода. Во-первых, его диаметр. Для нашего устройства подойдет провод диаметром 0,12 мм. Во-вторых, количество витков в обмотке. Рассчитать этот показатель точно практически невозможно, поэтому многие радиолюбители идут опытным путем. Но специалисты отмечают, что меньше 800 витков делать обмотку нельзя. Это связано с коэффициентом полезного действия прибора. Ниже 800 витков КПД резко снижается. В нашем случае берем количество витков – 1600.
Теперь третий показатель – это высота или длина намотки (все зависит от того, как расположить пластиковую трубу: вертикально или горизонтально). Здесь можно просто подсчитать, для этого количество витков умножается на диаметр провода. В нашем случае это будет выглядеть вот так:
1600х0,12=192 мм или 19 см.
После этого можно непосредственно переходить к сборке вторичной обмотки генератора Тесла. Процесс этот трудоемкий, требующий аккуратности и внимательности, так что пару дней вам придется на это затратить.
В первую очередь тонким сверлом в трубе делается отверстие. От него вдоль трубы отмеряется расстояние 19 см, где делается заметка, на которой делается еще одно отверстие сверлом. Теперь в первое отверстие вставляется медный провод, который изнутри трубы чем-нибудь закрепляется. К примеру, скотчем. Обратите внимание, что внутрь ПВХ трубы надо вставить приличный конец провода длиною не меньше 10 см.
Все готово, можно начинать наматывать провод на трубу снизу-вверх. Намотка должна производиться по часовой стрелке, витки должны ложиться аккуратно, плотно прижимаясь друг к другу. Никаких скруток и волн, все четко и ровно. Если вы устали или появились неотложные дела, то последний виток закрепить изолентой, чтобы он не сместился, и не сместились все остальные витки.

Как уже было сказано выше, весь процесс требует внимания и аккуратности. По сути, это 60% всей работы по сборке генераторной установки Тесла. Итак, последний виток уложен, теперь надо откусить провод с запасом в 10 см и вставить его конец во второе отверстие, где изнутри трубы закрепить скотчем.
Но это еще не все. Чтобы обмотка смогла выдержать механические нагрузки, чтобы между витками трансформатора не произошло пробоя, необходимо собранный прибор покрыть защитным изоляционным материалом. Кто-то для этих целей использует эпоксидную смолу, кто-то обычный паркетный лак и другие материалы. Здесь важно равномерно нанести защитное покрытие в несколько слоев (5-6). При этом последующий слой наносится на предыдущий только после полного его высыхания. Лучше всего защиту наносить губкой.
Второй этап
Переходим к изготовлению первичной обмотки генераторной установки Тесла. Для этого вам понадобится толстый изолированный провод из алюминия или из меди. Кстати, чем больше диаметр выбранного вами провода, тем лучше. Хотя есть определенные ограничения, поэтому провод сечением 10 мм² будет нормально.

Внимание! Диаметр первичной обмотки должен быть больше диаметра вторичной обмотки в два раза. Если у нас для вторичной обмотки генератора использовалась труба диаметром 50 мм, то для первичной потребуется 100 мм. В принципе, для этих целей можно использовать даже кастрюлю, потому что обмотка нам нужна будет в чистом виде без основы.
Что касается количества витков, то 5-6 штук будет в самый раз. А вот концы обмотки надо вывести вертикально вверх в одну сторону, при этом надо сделать так, чтобы оба конца находились на одном уровне. В принципе, все, первичная обмотка генератора Тесла своими руками (схема несложная) сделана.
Третий этап
Что можно сказать о схеме управления генератором Тесла. Существует множество вариантов: простых и сложных. Есть схемы, с помощью которых регулировку трансформатора надо проводить вручную, есть с автоматической настройкой. Любые схемы вы можете найти в свободном доступе в интернете, так что это не проблема.

В нашем случае была применена вот эта схема:
Разобраться в ней несложно, здесь были применены простые детали, которые наверняка есть у каждого радиолюбителя в наличии. Использовать можно новые и использованные элементы. Собирать блок управления можно на текстолитовой пластине размерами 20х20 см. Для защиты схемы можно сверху установить еще одну пластину, на которую, в свою очередь, монтируются обе обмотки.
Обратите внимание еще раз на схему управления генератором Тесла. Включать тумблеры SA2 и SA3 надо только после того, как генератор будет запущен и в верхней части катушки появится коронарный разряд. После этого можно включать оба тумблера, что приведет к увеличению мощности разряда. Если включение прибора провести с включенными тумблерами, то произойдет резкий бросок тока в цепь транзисторов. А этого лучше избегать.
Генератор тесла своими руками на 220 вольт
Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.
- Главная
- Каталог самоделки
- Дизайнерские идеи
- Видео самоделки
- Книги и журналы
- Форум
- Обратная связь
- Лучшие самоделки
- Самоделки для дачи
- Самодельные приспособления
- Автосамоделки, для гаража
- Электронные самоделки
- Самоделки для дома и быта
- Альтернативная энергетика
- Мебель своими руками
- Строительство и ремонт
- Самоделки для рыбалки
- Поделки и рукоделие
- Самоделки из материала
- Самоделки для компьютера
- Самодельные супергаджеты
- Другие самоделки
- Материалы партнеров

Бестопливный генератор Теслы (однофазный, Устройство от Dr Energie) своими руками
Всем доброго дня. На днях получил письмо от человека под ником Dr Energie.
Он написал, что хочет выложить на моем сайте схему безтопливного генератора, назвал ее БТГ Тесла (1-фазный).
Все схемы рисовал я, со слов и с корректировкой Dr Energie (могут быть небольшие ошибки).
Сам он сайты по альтернативной энергии не выходит и выходить не будет.
Описание блоков применяемых в данной установке:
Блок B1:
Блок представляет собой источник постоянного двухполярного напряжения 12 вольт. Источником являются две аккумуляторных батареи на 12 вольт. Можно применить источник и на 24 вольта или больше.
Блок B2:
Блок представляет собой двухполупериодный выпрямитель со средней точкой, на 12 вольт. В нем также стоят электролитические конденсаторы фильтра большой емкости.
Блок B3:
Это самый ответственный блок, он следит за работой всего устройства. В этом блоке находятся: задающий генератор промышленной частоты 50(60) герц, схема слежения за током генератора тока (B4), схема слежения за присутствием высокого напряжения соответствующего генератора (B5), схема контроля и регулирования выходного напряжения на выходе трансформатора TR3, индикация состояния всего устройства.
Блок B4:
Блок представляет собой усилитель тока, выполненный по схеме эмиттерного повторителя. Данный блок работает на низкоомную обмотку L1 выходного трансформатора TR3.
Блок B5:
Блок представляет собой преобразователь низкого напряжения 12 вольт в высокое напряжение 3000 вольт. Выполнен по схеме эмиттерного повторителя. Данный блок работает на низкоомную обмотку L2 выходного трансформатора TR2.
Трансформатор TR1:
Трансформатор представляет собой обычный измерительный трансформатор тока, мотается на обычном трансформаторном железе, соотношение обмоток 1:100. Можно заменить на измерительный шунт.
Трансформатор TR2:
Повышающий трансформатор с 12 вольт на 3000 вольт. Габаритная мощность 10-30 ватт. Мотается на обычном трансформаторном железе, сердечник для удобства лучше брать броневой ленточный. Обмотки для надежности мотаются на противоположных кернах, как на выходном трансформаторе строчной развертки телевизора. Высоковольтную обмотку лучше мотать на секционированном каркасе, как в некоторых неоновых трансформаторах. Соотношение витков L1:L2:L3.1:L3.2 1:1:250:250.
Трансформатор TR3:
Это основной элемент в этом устройстве, так сказать сердце всей системы. Пока могу сказать только одно, в нем не применяется сердечник, нет ни каких хитрых обмоток. Его также нельзя рассчитать как обычный классический трансформатор. Подробности о нем в соответствующем описании данного трансформатора.
Трансформатор TR4:
Обычный понижающий трансформатор с 220 вольт на 12 вольт со средней точкой. Мощность трансформатора 40-60 ватт. Можно применить готовый понижающий трансформатор на 50(60) герц, который имеет две выходные обмотки на 12 вольт.
Блок B1:
Это даже блоком назвать трудно. В нем два аккумулятора на 12 вольт емкостью 7 ампер часов. Два диода выполняют защитную функцию, отключают аккумуляторы от устройства после его запуска. Так же предусмотрен механический выключатель.
Блок B2:
Этот блок представляет собой обычный двухполупериодный выпрямитель, выполненный по мостовой схеме. На выходе выпрямителя стоят два фильтрующих конденсатора большой емкости. Конденсаторы шунтированы резисторами для их разрядки, когда установка выключена. Из-за малого напряжения на выходе выпрямителя, около 14 вольт, необходимости в них нет, поэтому резисторы можно не ставить.
Блок B3:
Данный блок на схеме нарисован в упрощенном виде, но достаточно для того чтобы устройство работало. В нем нет цепей контроля и стабилизации выходного напряжения, а так же контроля работы других блоков. Трансформатор 3TR1 сетевой понижающий трансформатор на 10-12 вольт, мощностью 5-10 ватт. Переменными резисторами 3R1 и 3R2 регулируют напряжение на клеммах X3-2 и X3-3.
В более совершенном устройстве этот блок имеет сложную схемотехнику, и выполняется на микропроцессоре и других специализированных ИС. Можно выполнить на дискретных элементах, но схема будет сложней. Этот блок сердце всей установки, от него зависит корректная работа устройства.
Блок B4, Блок B5:
Эти два блока выполняют одинаковую задачу, поэтому схемотехника у них одинаковая. На рисунке ниже представлена схема только одного блока B4. Блок представляет собой схему эмиттерного повторителя, выход которого работает на низкоомную нагрузку. Нагрузка представляет собой обмотки трансформаторов: для блока B4 обмотка L1 TR3, для блока B5 обмотка L2 TR2. Резисторы 4R1 и 4R2 ограничивают ток через базу транзисторов. Резисторы 4R3, 4R5 и 4R4, 4R6 представляют собой делители напряжения, которые задают рабочий режим транзисторов. Рассчитываются как для обычного усилителя, выполненного по схеме эмиттерного повторителя. Транзисторы 4VT1 и 4VT2 биполярные транзисторы, представляют собой комплементарную пару, что это такое ищите в интернете. Транзисторы должны быть рассчитаны на напряжение не ниже 50 вольт и ток не менее 5 ампер, по соображениям надежности. Устанавливаются на радиаторы площадью около 250 квадратных сантиметров.
Трансформатор намотан на диэлектрическом каркасе, примерный диаметр каркаса 50-75 миллиметров, длина 200-250 миллиметров. Вполне подойдет каркас из пластиковой канализационной трубы диаметром 50 миллиметров. Есть несколько вариантов намотки трансформатора, два из них показаны ниже.
Вариант 1.
Первыми мотаются обмотки L2.1 и L2.2. Намотка производится спаренным кабелем, подойдет обычный двухжильный, плоский кабель в одиночной изоляции. Сечение жилы кабеля 0.5-0.75 квадратных миллиметров. Намотка производится в один ряд до половины каркаса.
Второй мотается обмотка L3. Намотка производится обычным силовым, гибким кабелем. Сечение жилы 4-6 квадратных миллиметров. Намотка производится в два ряда до половины каркаса. Направление намотки такое же, как и обмоток L2.1 и L2.2. Между обмотками прокладывается изоляция толщиной 1-2 миллиметра.
На второй половине каркаса мотается обмотка L1 с отступом от обмоток L3, L2.1 и L2.2 примерно 3-5 миллиметров. Отступ применен для исключения электрического пробоя. Намотка производится обычным силовым, гибким кабелем. Сечение жилы 1.5-2.5 квадратных миллиметров. Намотка производится в два ряда до заполнения каркаса.
Вариант 2.
Первой мотается обмотка L2.1. Намотка производится обычным силовым, гибким кабелем. Сечение жилы кабеля 0.5-0.75 квадратных миллиметров. Намотка производится в один ряд до половины каркаса.
Второй мотается обмотка L3. Намотка производится обычным силовым, гибким кабелем. Сечение жилы 4-6 квадратных миллиметров. Намотка производится в два ряда до половины каркаса. Направление намотки такое же, как и обмоток L2.1 и L2.2. Между обмотками прокладывается изоляция толщиной 1-2 миллиметра.
Третьей мотается обмотка L2.2. Намотка производится обычным силовым, гибким кабелем. Сечение жилы кабеля 0.5-0.75 квадратных миллиметров. Намотка производится в один ряд до половины каркаса. Между обмотками прокладывается изоляция толщиной 1-2 миллиметра.
На второй половине каркаса мотается обмотка L1 с отступом от обмоток L3, L2.1 и L2.2 примерно 3-5 миллиметров. Отступ применен для исключения электрического пробоя. Намотка производится обычным силовым, гибким кабелем. Сечение жилы 1.5-2.5 квадратных миллиметров. Намотка производится в два ряда до заполнения каркаса.
Упрощенный вариант.
Этот вариант отличается от варианта 2 тем, что не мотается обмотка L2.2. Меняется так же трансформатор TR2, из него исключается обмотка L3.2. В таком варианте уменьшается выходная мощность установки, но как вариант тоже подходит.
Еще два варианта выходного трансформатора TR3.
От первых двух вариантов различаются расположением обмоток. В детальном описании этих двух вариантов нет необходимости. Они практически идентичны описанным выше, за исключением одного. Обмотка L3 разбивается на две части. Эти два варианта более оптимальные по сравнению с первыми.
Описание и принцип работы устройства:
Теперь попробую описать работу устройства так, как я это понимаю. Наверное, с этого надо было начинать, но решил выложить сначала схему устройства, а затем описание его работы. Принцип работы не претендует на истину, это лишь мое понимание, на котором построено устройство. Смысл работы прост, построен по принципу «Разделяй и властвуй».
Сначала о том, что мы хотим получить от устройства. Конечно, мощность, которая выражается формулой P=U*I. То есть двумя составляющими U-напряжение и I-ток. Это классическая формула, которая рассматривается еще в школе. Эта формула справедлива как для генератора, так и для потребителя. Причем в генераторе подразумевается, что напряжение и ток принадлежат одному источнику (генератору) и нигде не рассматривается случай, когда напряжение принадлежит одному источнику, а ток принадлежит другому источнику. Это кажется абсурдом.
Рассмотрим пример, когда напряжение и ток принадлежит разным источникам. Допустим, у нас есть Источник-1 100 вольт и 0.1 ампер и Источник-2 1 вольт и 10 ампер. Каждый из них при таких параметрах выдает по 10 ватт мощности, в сумме 20 ватт. Предположим, что мы каким-то образом смогли на одном потребители выделить мощность этих двух генераторов, при этом от первого источника мы взяли первую составляющую мощности – напряжение, от второго источника взяли вторую составляющую мощности – ток. Формула мощности приобрела следующий вид P=U(источник 1)*I(источник 2). В итоге у нас на нагрузке выделилась мощность P=100*10=1000 ватт. Это и есть принцип «Разделяй и властвуй».
Как мы можем разделить на две составляющие мощность источника? С этим проблем нет. Это можно сделать с помощью двух преобразователей, один из которых создает высокое напряжение и малый ток, второй наоборот, создает большой ток и малое напряжение. Схемотехника таких преобразователей широко известна и разнообразна. В данном устройстве блок B4 выдает малое напряжение и большой ток, блок B5, большое напряжение и малый ток. Схемотехника блоков идентична и выполнена по схеме эмиттерного повторителя (усилителя тока). Эта схема позволяет работать на низкоомную нагрузку, которой являются обмотки трансформаторов L1 TR3 для блока B4 и L2 TR2 для блока B5.
Теперь нам надо объединить напряжение с блока В5 с током с блока В4. Это объединение происходит в выходном трансформаторе TR3. Ниже показан упрощенный вариант выходного трансформатора (смотрите рисунок Трансформатор TR3).
Это индуктивно-емкостной трансформатор. Обмотки L2, L3 представляют собой емкость, между ними существует емкостная связь, поэтому эту часть трансформатора можно назвать емкостной трансформатор. Обмотки L1, L3 образуют индуктивный трансформатор с малой индуктивной связью. Влияния обмоток L2 и L3 между собой почти не происходит. Емкостная связь между ними очень маленькая, из-за взаимного расположения. Индуктивная связь такая же, как между L1 и L3, но тока в обмотке L2 почти нет, так как цепь обмотки L2 разомкнута для тока. Вариантов выполнения выходного трансформатора много, лучший вариант можно определить экспериментальным путем.
Изменения и дополнения:
В ходе исследований выяснилось, что можно упростить некоторые части системы. Это касается высоковольтного трансформатора. Смотрите рисунки «Схема соединения трансформаторов TR2-TR3».
Это касается выходной обмотки трансформатора TR2. Выходная обмотка выполняется одной секцией L3, а не как раньше L3.1 и L3.2. Надобности в двух секциях обмоток нет. Так же выяснилось, что второй вывод обмотки, который раньше не был подключен, можно соединить с другим выводом обмотки. Также обмотку можно заменить трубкой необходимого диаметра с разрезом вдоль (этот вариант еще не проверялся). Схемы с изменениями показаны на Вариант 1 и Вариант 2.
Ниже два рисунка, на одном «Схема соединения трансформаторов TR2-TR3», на втором варианты намотки выходного трансформатора TR3. Этот вариант еще не проверялся. В пояснениях, думаю, нет необходимости, из рисунков все понятно.
Катушка Тесла своими руками
Трансформатор Тесла изобрел знаменитый изобретатель, инженер, физик, Никола Тесла. Прибор является резонансным трансформатором, вырабатывающим высокое напряжение высокой частоты. В 1896 году, 22 сентября Никола Тесла запатентовал свое изобретение как «Аппарат для производства электрических токов высокой частоты и потенциала». С помощью этого устройства он пытался передавать электрическую энергию без проводов на большие расстояния. В 1891 году Никола Тесла продемонстрировал миру наглядные эксперименты по передаче энергии от одной катушки к другой. Его устройство извергало молнии и заставляло светиться люминесцентные лампы в руках удивленных зрителей. Посредством передачи тока высокого напряжения высокой частоты ученый мечтал обеспечить бесплатной электроэнергией любое здание, частный дом и прочие объекты. Но, к сожалению, из-за большого потребления энергии и низкой эффективности, широкого применения катушка Тесла так и не нашла. Не смотря на это, радиолюбители из разных уголков планеты собирают небольшие катушки Тесла для развлечений и экспериментов.
Также катушки Тесла используют для проведения развлекательных мероприятий и Тесла шоу. В 1987 году советский радиоинженер Владимир Ильич Бровин изобрел генератор электромагнитных колебаний, названный в его честь «качер Бровина», используемый в качестве элемента электромагнитного компаса, работающего на одном транзисторе. Предлагаю вам собрать действующую модель катушки Тесла или качер Бровина своими руками из подручных материалов.
Список радиодеталей для сборки Катушки Тесла:
- Провод эмалированный ПЭТВ-2 диаметр 0,2 мм
- Провод медный в полихлорвиниловой изоляции диаметр 2,2 мм
- Туба от силиконового герметика
- Фольгированный текстолит 200х110 мм
- Резисторы 2,2К, 500R
- Конденсатор 1mF
- Светодиоды 3-х вольтовые 2 шт
- Радиатор 100х60х10 мм
- Регулятор напряжения L7812CV или КР142ЕН8Б
- Вентилятор 12 вольтовый от компьютера
- Коннектор Banana 2 шт
- Труба медная диаметр 8 мм 130 см
- Транзистор MJE13006, 13007, 13008, 13009 из советских КТ805, КТ819 и аналогичные
Катушка Тесла состоит из двух обмоток. Первичная обмотка L1 содержит 2,5 витка медного провода в полихлорвиниловой изоляции диаметром 2,2 мм. Вторичная обмотка L2 содержит 350 витков в лаковой изоляции диаметром 0,2 мм.

Схема катушки Тесла или качера Бровина на одном транзисторе
Каркасом для вторичной обмотки L2 служит туба от силиконового герметика. Предварительно удалив остатки герметика, отрежьте часть тубы длиною 110 мм. Отступив по 20 мм от нижней и верхней части, намотайте 350 витков медного провода диаметром 0,2 мм. Провод можно добыть из первичной обмотки любого старого малогабаритного трансформатора на 220В, например, от китайского радиоприемника. Катушка мотается в один слой виток к витку, как можно плотнее. Концы провода следует пропустить во внутрь каркаса через предварительно просверленные отверстия. Готовую катушку для надежности покройте пару раз нитролаком. В поршень вставьте остро заточенный металлический стержень, подпаяйте к нему верхний вывод обмотки и закрепите термоклеем. После чего вставьте поршень в каркас катушки. От носика отрежьте колечко с резьбой, получится гайка, с помощью которой вы легко закрепите катушку на текстолитовой плате, накрутив получившуюся гайку на резьбу выходного отверстия тубы. В дне каркаса просверлите отверстие для светодиода и второго вывода обмотки.

В своей катушке я использовал транзистор MJE13009. Также подойдут Транзисторы MJE13006, 13007, 13008, 13009 из советских КТ805, КТ819 и другие аналогичные. Транзистор обязательно разместите на радиаторе, в процессе работы он будет очень сильно греться и по этому предлагаю установить вентилятор и немного усовершенствовать схему.
Поскольку, для питания катушки требуется напряжение более 12 вольт. Максимальную мощность катушка Тесла развивает при напряжении питания в 30 вольт. А так, как вентилятор рассчитан на 12 вольт, то в схему следует добавить регулятор напряжения L7812CV или советский аналог КР142ЕН8Б. Ну, а чтобы катушка выглядела более современной и привлекала внимание, добавим пару светодиодов синего цвета. Один светодиод подсвечивает катушку изнутри, а второй подсвечивает катушку снизу. Схема будет выглядеть так.

Схема катушки Тесла или качера Бровина с подсветкой и охлаждением
Все компоненты катушки Тесла разместите на печатной плате. Если вы не хотите изготавливать печатную плату, просто разместите все детали катушки Тесла на кусочке МДФ или рифленого картона от бумажной коробки и соедините между собой методом навесного монтажа.

Печатная плата катушки Тесла или качера Бровина с подсветкой и охлаждением
Готовая печатная плата будет выглядеть так. Один светодиод припаивается в центре, он подсвечивает пространство под печатной платой. Ножки сделайте из четырех глухих гаек, накрученных на винты.

Второй светодиод припаивается под катушкой, он будет подсвечивать ее изнутри.

Транзистор и регулятор напряжения обязательно намажьте термопастой и разместите на радиаторе размером 100х60х10 мм. Регулятор напряжения следует изолировать от радиатора с помощью теплопроводящих прокладок и изоляционных шайб.

Катушку вставьте в отверстие и затяните с обратной стороны пластиковой гайкой.

Первичную обмотку следует мотать в том же направлении, что и вторичную. То есть, если катушку L2 наматывали по часовой стрелке, значит катушку L1 тоже надо мотать по часовой стрелке. Частота катушки L1 должна совпадать с частотой катушки L2. Чтобы добиться резонанса, катушку L1 надо немного настроить. Делаем так, на каркасе диаметром 80 мм наматываем 5 витков оголенного медного провода диаметром 2,2 мм. К нижнему выводу катушки L1 припаиваем гибкий провод, к верхнему выводу прикручиваем гибкий провод, так чтобы его можно было перемещать.
Включаем питание, подносим неоновую лампу к катушке. Если она не светится, значит надо поменять местами выводы катушки L1. Далее опытным путем подбираем положение катушки L1 по вертикали и количество витков. Перемещаем провод прикрученный к верхнему выводу катушки вниз, добиваемся максимального расстояния на котором будет зажигаться неоновая лампа, это будет оптимальный радиус действия катушки Тесла. В итоге у вас должно получиться, как у меня 2,5 витка. После экспериментов изготавливаем катушку L1 из провода в полихлорвиниловой изоляции и припаиваем на место.

Наслаждаемся результатами своих трудов… После включения питания, появляется стример длиною 15 мм, неоновая лампочка начинает светиться в руках.

Так, снимали сагу Звездные войны… Вот он, секрет меча Джидая…

В автомобильной лампе появляется небольшая плазма исходящая от нити накаливания к стеклянной колбе лампы.

Чтобы значительно увеличить мощность катушки Тесла рекомендую изготовить торроид из медной трубки диаметром 8 мм. Диаметр кольца 130 мм. В качестве торроида можно использовать аллюминиевую фольгу скомканную в шарик, металлическую баночку, радиатор от компьютера и другие не нужные, объемные предметы.

После установки торроида мощность катушки значительно увеличилась. Из медной проволоки находящейся рядом с торроидом, появляется стример длиною 15 мм.

Теперь катушка Тесла может зажигать большие люминесцентные лампы на 220 вольт.

И даже светодиодные…

А это плазма возникающая в автомобильной лампочке при нахождении рядом с торроидом.

Делать торроид или нет, решать вам. Я всего лишь показал и рассказал вам о том, как я сделал катушку Тесла или качер Бровина на одном транзисторе, своими руками и о том, что у меня получилось. Моя катушка производит ток высокого напряжения высокой частоты, согласно законам физики. Спасибо Николе Тесла и Владимиру Ильичу Бровину за огромный вклад в науку!
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как работает катушка Тесла!
Генератор Тесла
В условиях постоянного роста потребляемой энергии широкий интерес вызывает возможность добычи электричества нетрадиционными способами. Среди них с давних пор известен генератор Тесла, способный вырабатывать энергию без использования какого-либо топлива. Данный метод теоретически открывает возможности для полной независимости от энергоснабжения, однако, как показывает практика, до этого еще очень далеко.
- Альтернативный источник электроэнергии
- Технические возможности генератора
- Принцип работы генератора Тесла
- Параметры и характеристики
- Как сделать генератор Тесла своими руками: порядок действий
Альтернативный источник электроэнергии
Данное изобретение можно смело отнести к альтернативным источникам электроэнергии. Благодаря своим возможностям, генератор Тесла является возможной заменой солнечным батареям. Он отличается простой конструкцией, которая легко собирается и минимальным количеством используемых материалов. Соответственно, и финансовые затраты тоже незначительные. Отдельно взятое устройство конечно не сравнится с аналогичной солнечной панелью, но если соединить в одно целое сразу несколько единиц, то может вполне получиться приемлемый результат.
Многие ученые до сих пор ведут споры об использовании действия свободной энергии при создании такого устройства. Однако, большинство современных технических достижений в самом начале их открытия, тоже считались недосягаемыми для практической реализации. До настоящего времени остались неисследованными многие сферы, связанные с энергией и физическими полями. Хорошо изучены лишь те виды, которые поддаются исследованиям, измерениям и прочим ощущениям. Тем не менее, существуют явления, не поддающиеся каким-либо замерам, поскольку отсутствуют даже приборы для этих целей.
В категорию неисследованного попал и трансформатор Тесла, поскольку принципы его работы расходятся с общепринятыми теориями, связанными с производством электроэнергии. Многим ученым он кажется своеобразным вечным двигателем, не требующим энергии для своей работы, да еще и способным производить другие виды энергии – электрическую или тепловую. Эти утверждения связаны с использованием генератором свободной энергии, происхождение которой до сих пор никак теоретически не обосновано. То есть, на основе известных законов, понятий и определений делается вывод, что такая конструкция на практике не будет работать, поскольку она идет вразрез с законом сохранения энергии и не соблюдает его принцип.
Пока ученые спорят, некоторые домашние умельцы создают вполне работоспособные модели, подтверждающие на практике теоретические предположения. Для более глубокого понимания процессов, следует внимательно изучить конструкцию и принцип действия этих устройств.
Технические возможности генератора
Способы получения электричества, предложенные изобретателем Николой Тесла, значительно обогнали свое время. Даже сейчас эта тема широко не обсуждается, а если и рассматривается, то лишь в теоретической плоскости, без возможности практического использования.
Среди них особое место занимает бестопливный генератор Тесла, получивший в названии имя самого изобретателя, оформившего патент на устройство. Изначально существовало несколько вариантов его использования, но затем его основной функцией стало получение электрической энергии высокого напряжения и высокой частоты. Следует отметить, что в ходе экспериментов выходное напряжение нередко доходило до нескольких миллионов вольт. В результате, в воздушном пространстве возникали электрические разряды большой мощности, длина которых могла доходить до нескольких десятков метров.

С помощью этого устройства стало возможно создавать и распространять электрические колебания, управлять аппаратурой без проводов, путем телеуправления. Прибор использовался и при создании беспроводной радиосвязи, а также для передачи энергии на расстояние.
Практическое применение в начале прошлого века генератор получил в области медицины. Больные подвергались обработке потоками высокочастотной энергии, обладающими тонизирующим и лечебным действием. Проводились и эксперименты по переработке отходов мусорных свалок в электричество, создавая принцип работы устройства. Газ, выделяемый при сжигании мусора, служит универсальным источником тока для генератора, обладающего высоким КПД. Для того чтобы понять, как такое возможно, нужно знать устройство и принцип действия прибора.
Принцип работы генератора Тесла
Представленное генераторное устройство работает под влиянием внешних процессов или окружающей среды. Источниками энергии становятся вода, ветер, различные вибрации, создающие колебания и другие факторы. В этом состоит его главный принцип работы.
Простейший магнитный генератор состоит из катушки с двумя обмотками. Работа вторичного элемента осуществляется под действием вибрации, в результате, так называемые эфирные вихри взаимодействуют с его поперечным сечением. Это приводит к образованию напряжения во всей системе и к дальнейшей ионизации воздуха. Данные процессы возникают на самом конце обмотки, образуя электрические разряды.

В конструкции прибора используется трансформаторный металл, усиливающий индуктивные связи. Между элементами обмотки возникают колебания, а разряды образуются в виде плотных сплетений.
Другая схема генератора использует мощность, вырабатываемую самим оборудованием. Для того чтобы запустить генератор необходим внешний толчок в виде импульса, создаваемого аккумулятором. Прибор состоит из двух металлических пластин, одна из которых монтируется наверху, а другая устанавливается в землю. Между ними в цепь включается конденсатор.
Подача постоянного разряда производится к металлической пластине, после чего начинают выделяться определенные частицы с положительным потенциалом. На поверхности Земли образуются отрицательные частицы. В результате образуется разность потенциалов и ток начинает поступать в конденсатор.
Следует учитывать специфику подключения, которой отличается генератор свободной энергии Тесла. Для работы первичной катушки требуется высоковольтное напряжение высокой частоты. Данный ток обеспечивает неоднократная искровая разрядка конденсаторного элемента. Каждая искра образуется в таком промежутке, когда напряжение достигает определенного уровня между терминалами конденсаторов.

Для того чтобы искровой промежуток располагался в проводящем положении, требуется последовательная связь конденсатора и первичной катушки. Это приводит к созданию цепи RLC, которая, в свою очередь, приводит к электрическим колебаниям с определенной частотой. Одновременно на вторичной катушке образуется собственная цепь RLC. В этом месте электрические колебания возбуждаются под влиянием индукции напряжения. В каждой цепи колебания происходят с индивидуальной частотой, в зависимости от конкретных параметров конструкции.
Для обеспечения нормальной работы генератора, обе цепи должны войти в резонанс между собой, то есть их частоты колебаний совпадают. После этого во вторичной катушке происходит многократное увеличение амплитуды, что приводит к созданию высокого выходного напряжения.
Параметры и характеристики
В работе электрогенератора Тесла используется принцип трансформатора с отсутствующим сердечником. Конструкция состоит из первичной катушки с витками проводов большого диаметра, и вторичной катушки с витками из более тонких проводов. В приборе без магнита отсутствует традиционный ферромагнитный сердечник, что и отличает его от обычного трансформатора. Благодаря такой конструкции, уровень взаимной индуктивности катушек значительно снижается. Большое количество витков на вторичной катушке, способствует образованию высокого напряжения при минимуме энергетических затрат.

Данная теория нашла наглядное практическое подтверждение. Домашние умельцы, используя генератор свободной энергии мощностью 40 Вт, получают напряжение до 500 киловольт. Это приводит к образованию длинных красивых разрядов, достигающих двух или трехметровой величины. Попадая в атмосферу, высоковольтный разряд становится похож на своеобразную корону. С обычным трансформатором невозможно достичь такой продуктивной работы и наглядных результатов.
Помимо воздушных эффектов, происходит образование длинных мобильных зарядов при контакте с заземленными предметами. Следует отметить, что все разряды обладают определенными частотами, а другие частоты кратны первоначальному значению.
Каждый такой высоковольтный заряд состоит из определенного набора частот, способных разбивать молекулы газов, независимо от устойчивости любой из них. Процесс расщепления сопровождается появлением темно-синего цвета зеленоватого оттенка.

Таким образом, если на электрическую корону подать струю газа, то под влиянием резонансных сил произойдет распад молекул на отдельные атомы. Внешние электроны атомных частиц сосредоточатся на вторичной обмотке и перейдут в корону в виде ионов. На игольчатых выходах вторичной обмотки образуется очень высокое напряжение. В этом же месте устанавливается диодный выпрямитель, с положительным потенциалом, направленным в сторону острия. За счет этого возможно получить максимальный положительный результат, поскольку действие переменной токовой полуволны позволяет разбивать молекулы с одной и той же частотой.
Под действием постоянной токовой составляющей атомы без электронов будут разгоняться в направлении от иглы. В результате, в пространство выходят положительные атомы водорода, которые и образуют светящуюся корону.
Как сделать генератор Тесла своими руками: порядок действий
Первым этапом при изготовление генератора, будет устройство заземления. Если устройство будет использоваться на даче или в загородном доме, можно ограничиться единственным металлическим штырем, забитым глубоко в землю. Разрешается использовать готовые металлические конструкции, расположенные в земле. При использовании генератора в квартире, заземлением становятся DUG трубы или розетки с подключенным заземляющим контактом.

На втором этапе нужно создать элемент для приема свободных положительно заряженных частиц, вырабатываемых солнцем или любыми приборами искусственного освещения. В случае правильной сборки, прием возможен даже при пасмурной погоде. Кусок фольги закрепляется на фанерном или картонном листе. При попадании световых частиц на алюминий, в нем возникает электрический ток. Количество энергии напрямую зависит от площади фольги. Мощность генератора Тесла можно существенно повысить путем изготовления нескольких приемников и их параллельного соединения между собой.
После окончания сборки генератора тесла, схема должна быть подключена. Для этого контакты через конденсатор соединяются между собой. Полярность обозначена на корпусе конденсатора. Отрицательный контакт соединяется с заземлением, а положительный – прикрепляется проводом к фольге. Сразу же начнется зарядка конденсатора, после чего из него можно получать электроэнергию. Чтобы конденсатор не взорвался от избыточной энергии, в цепь устанавливается резистор, выполняющий ограничительную функцию.