Переменный ток и постоянный ток: отличие
В чём разница переменного и постоянного тока
Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.
Постоянный электрический ток по определению – это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.
Графическое изображение постоянного тока
Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).
Графическое изображение переменного тока
Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «
». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.
Почему в сети переменное напряжение, а не постоянное
Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.
Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.
Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.
Сначала с генератора получает 220 – 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.
Три фазы трехфазного тока сдвинутые на 120 градусов
Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.
Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения – это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.
Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали – Почему в нашей розетки течет переменный ток, а не постоянный?
Тесла, Эдисон и война токов (переменный или постоянный ток)
Как Эдисон, Тесла и Вестингауз боролись за электрификацию мира
В период младенчества электротехники специалисты раскололись на два лагеря. Одни видели будущее за постоянным током, другие — за переменным. Бурлили полемические страсти. Дискуссия, по существу, продолжается и сегодня, хотя уже на новом уровне.

100-летний киловольтметр на исторической гидроэлектростанции в Хаймбахе (Германия)
Конец XIX в. ознаменовался бурным развитием электроэнергетики во всем мире. От первых электрических опытов до широкого применения электричества в промышленности прошло почти три столетия.
Уже никого не удивлял электрический телеграф, широко применялась гальванопластика. Появились первые электрические генераторы, приводимые в движение паровой машиной и сделавшие электроэнергию сравнительно дешевой. Были изобретены лампы накаливания. Началось создание первых энергосистем.
Одну из них создал в Нью-Йорке в 1882 г. выдающийся американский изобретатель и бизнесмен Т. А. Эдисон. И сразу же число электростанций его компании стало быстро расти. В 1886 г. их было 68, а в 1887 — около 120, причем они могли питать уже около 325 тыс. электроламп.

Томас Эдисон — американский изобретатель и бизнесмен, выступал за развитие сети постоянного тока

Лампа накаливания Томас Эдисона
Электрический бум вызвал повышенное потребление меди и, как следствие, повышение цен на нее в несколько раз. Это в определенной мере снизило шансы электроэнергетики в борьбе с газовым освещением.
Нужно было искать выход. Он был найден в увеличении питающего напряжения электрических сетей, что могло экономить медь, так как сечение питающих проводов уменьшалось в сотни и более раз.
Однако высокое напряжение увеличивало опасность для потребителей. Это быстро выявил первый опыт эксплуатации электрических сетей. Поиски путей уменьшения опасности привели к развитию техники трансформации напряжения.

Один из первых трансформаторов (изобретатели — Отто Блати, Карой Циперновский и Микша Дери)
Тем не менее, по-прежнему в основном «работал» постоянный ток: электрический телеграф, электрохимия, зарядка аккумуляторов, первые электродвигатели. Правда, для электрического освещения с помощью дуговых ламп переменный ток имел преимущество, так как электроды сгорали более равномерно и не надо было их делать разными по сечению.
Первые генераторы переменного тока для электроосвещения применил ваш соотечественник П. Н. Яблочков. В широких масштабах их начала применять американская фирма «Вестингауз». В 1887 г. она уже, имела мощности, позволявшие питать почти 135 тыс. электроламп. Компания Эдисона получила опасного конкурента.

Никола Тесла с «Теорией натуральной философии…» Руджера Бошковича на фоне катушки ВЧ трансформатора в своей лаборатории на Хаустон-стрит. 20 мая 1896 г. Во время войны токов переменный ток, который предпочитал Тесла, боролся за широкое распространение с постоянным током, который предпочитал Эдисон.

Генератор Westinghouse, конец 1800-х годов. «Вестингауз электрик» — одна из ведущих электротехнических компаний США, существовавшая с 1886 года по 1997 год.

Распределительный щит переменного тока Westinghouse, около 1880-х гг.
В 1888 г. началась яростная полемика между сторонниками постоянного и переменного тока.
Фирма «Эдисон Электрик Лайт Компани» опубликовала Красную книгу под заголовком «Предостережение», в которой переменный ток подвергался резкой критике главным образом из-за его, якобы, повышенной опасности.
Был приложен список людей, смертельно пораженных переменным электрическим током. Описывались другие действительные и мнимые недостатки переменного тока, но особый упор делался все же на опасность его применения.
В борьбу включился инженер Гарольд Браун, который начал эксперименты по воздействию электротока на животных. Иногда опыты делались публичными, и на глазах у публики погибали собаки и лошади. Апогеем этой борьбы стал письменный вызов Брауна Вестингаузу, опубликованный в ряде американских газет.

Демонстрация Гарольда Брауна 22 декабря 1888 года
Он писал: «Я вызываю г-на Вестингауза на встречу со мной в присутствии компетентных экспертов в области электротехники, и пусть через его тело пропускают переменный ток, а через мое — постоянный. Напряжение будет повышаться до тех пор, пока один из нас не закричит и этим публично признает свое поражение.
Однако, я хочу предупредить г-на Вестингауза о том, чтец согласно моим экспериментам, воздействие переменного тока напряжением 160 В в течение 5 секунд приводит к фатальному исходу». (При одинаковом измеренном напряжении переменный ток ДЕЙСТВИТЕЛЬНО БОЛЕЕ ОПАСЕН ДЛЯ ЧЕЛОВЕКА.)

Социальная реклама 1889 года против использования переменного тока
Вестингауз вызова не принял. В некоторых штатах США под влиянием общественности были приняты законы, запрещающие применять напряжение переменного тока более 200 В.
Полемика достигла России, где в то время решались вопросы электрического освещения обеих столиц.
В 1889 г. А. Г, Столетов, электротехник высочайшего класса, писал: «Вспоминается та травля, которой подвергались трансформаторы в нашем отечестве. И в ученых (!) докладах, и в газетных статьях система обличалась как нечто еретическое, ненациональное и безусловно гибельное, доказывалось (!), что трансформаторы запрещены во всех порядочных странах Запада и терпятся разве в какой-нибудь Италии, падкой на дешевизну.
Защитники «ненациональности в электричестве» забывали, что первую идею о трансформации тока в технике сами иностранцы приписывают Яблочкову и что на Всероссийской выставке 1882 г. в Москве демонстрировал такую систему г. Усагин.
Знатоки западных порядков проглядели или замолчали, что в это самое время «гибельная» система питала десятки тысяч ламп в лучших частях Лондона, а французы не задумывались применить ее к освещению жилища главы государства».
Ситуация, в общем-то удивительно напоминающая нынешнюю полемику по ядерной энергетике.

Томас Эдисон с сотрудниками, Менло-Парк, штат Нью-Джерси, 1881 год
В борьбу включился Эдисон, опубликовавший статью «Об опасностях электрического освещения». Статья была перепечатана в русском журнале «Электричество».
Автор писал: «Употребление переменных токов высокого напряжения не имеет никакого оправдания ни с коммерческой, ни с научной точек зрения».
Однако в статье были вполне здравые мысли: «Когда нужно было регламентировать давление в паровых котлах, в видах безопасности служащих и публики, то поступали иначе, чем поступают теперь относительно электрического напряжения, а между тем оба случая вполне схожи.
Нужно было бы припомнить те соображения, которые привели к прекрасной системе: к у становлению ПРЕДЕЛЬНОГО давления пара и к периодическому инспектированию котлов. Нужно было бы приложить те же правила, чтобы гарантировать нас против опасностей, представляемых чрезмерным электрическим напряжением».

Сотрудники Edison Electric, около конца 1800-х годов
Сторонники переменного тока на критику отвечали делом и реализовывали все его преимущества. Создание высоковольтных линий передач позволило располагать электростанции на расстояниях от потребителей порядка сотен километров вместо двух-трех на постоянном токе. Это позволило вынести станции за черту города, освободив горожан от копоти и позволив применять энергию рек и водопадов, находящихся далеко от промышленных центров.
Изобретение Теслой и Доливо-Добровольским многофазных систем позволило создать новый тип электродвигателя с вращающимся магнитным полем, который обходился без капризного и ненадежного в эксплуатации коллекторно-щеточного аппарата.

Модель первого асинхронного двигателя Николы Теслы в музее Тесла в Белграде, Сербия
Был сконструирован электрический счетчик ампер-часов переменного тока. Сторонники Эдисона, которые говорили о невозможности такой конструкции, лишились весомого аргумента.
Были созданы новые материалы для изоляции и новые конструкции изоляторов. Разработаны правила безопасности для электропотребителей. Наконец, были разработаны первые выпрямительные установки, которые практически сняли все вопросы оппонентов.
Сторонники постоянного тока в США пошли на отчаянный шаг в дискредитации переменного тока. Для первой легальной смертной казни на электрическом стуле (6 августа 1890 г.) они использовали генератор переменного тока фирмы «Вестингауз», предоставленный Брауном. Но и это не принесло им победу.
К чести ученых и электротехников Москвы, собранных городским головой в мае 1888 г., они утвердили применение переменного тока повышенного напряжения.

Электростанция переменного тока General Electric в США — 1904 год

Машинный зал Гиндукушской ГЭС на реке Мургаб в Туркменистане. Построена в 1909 году. Генератор переменного тока с возбудителем изготовлен в Будапеште (Венгрия) на Ganz Works. Фотография Прокудина-Горского, 1911 год.
Теперь сделаем выводы.
Бурное и плодотворное развитие электротехники в период с 1886 по 1895 гг. обязано жестокой конкурентной борьбе между сторонниками постоянного и переменного тока.
Эта борьба оказала благоприятное влияние на развитие энергетической и светотехнической промышленности. Именно тогда было изобретено электрооборудование, позволившее обеспечить его надежность и безопасность потребителей в приемлемой степени.
Так что споры вокруг атомной энергетики тоже далеко не бесполезны. Пусть оппоненты указывают слабые места каждой системы, а изобретатели и конструкторы их устраняют. Лишь бы методы полемики оставались в рамках приличий. А в результате должны победить приемлемые для всех решения.
Переменный ток
Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят – постоянный ток одной амплитуды.

Создание переменного тока
Как образуется переменный ток
Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.
Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.
История открытия переменного тока
Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.
Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.
Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.
Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Школьный вариант трактовки переменного и постоянного тока
Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природные двух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:
- Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть – замалчивает работы с переменным током. Подобно Георгу Ому, ученый – талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
- Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.
Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.
Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.
Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Никола Тесла изучал электрические машины
Почему переменный ток используется чаще постоянного
Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.
Никола Тесла: вопросы безопасности и эффективности
Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.
Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:
- Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
- В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.
Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.
Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.
Через эфир
Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».
Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.
Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.
Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!
Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Диполь антенна Герца
Вибратор Герца, эфир, электромагнитная волна
Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.
Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда – противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.
Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».
Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.
Где используется переменный ток
Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:
- Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
- КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
- При помощи постоянного тока действуют магниты. К примеру, домофонов.
- Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
- Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.
В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы – неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.
Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.
Постоянный и переменный ток
Технический прогресс с появлением электричества начал развиваться семимильными шагами. Новый вид энергии и практическое применение продуктов, получаемых в результате её преобразования, изменили класс жизни человека.

Что такое электрический ток
Перемещения свободных носителей электрических зарядов в вакууме или веществе в фиксированном направлении назвали электрическим током. Свободными носителями в металлах являются электроны, в жидкостях или газах – ионы. Название «ток» имеет два толкования. Первое – обозначает само продвижение электрического заряда в проводнике, второе – оценку числа электронов, проходящих по проводнику за 1 с. Его силу можно определить по Закону Ома. Для этого используется формула:
где U – напряжение, В; R – сопротивление, Ом.
Ток постоянный и переменный
Электроны в проводниках движутся от плюса к минусу. Движение равномерное, всё время с постоянной величиной. Если задаться вопросом, какие токи носят определение постоянных, сначала нужно хорошо представлять, куда течёт ток.
Внимание! Направлением тока считают то направление, куда движутся положительно заряженные частицы: от плюса к минусу. Хотя дорога свободных электронов лежит от минуса к плюсу.

Значит, постоянный ток – это направленное перемещение заряженных частиц, несущих в себе положительный заряд, которые не меняют свои величину и направление с течением времени. Все остальные токи – переменные. В этом их разница.
Alternative Current – AC, так обозначается переменный ток на приборах. Direct Current – DC, это понятное обозначение постоянного тока.

Различия токов
Незнание отличий приводит к неправильному подключению потребителей напряжения к источникам питания. Это вызывает повреждение приборов или, того хуже, опасные для жизни ситуации.
Чтобы чётко разобраться, какой ток называется переменным, какой постоянным, нужно сопоставить параметры.
При сравнении характеристик этих двух видов электричества выделяют отличия:
- Физические – у переменного тока сила и направление состоят во временной зависимости. В бытовой сети частота пульсации – 50 Гц. Полярность изменяется по синусоиде 50 раз за секунду. Носители зарядов постоянного тока направленности не меняют.
- Конструктивные – на выводах или контактах у DC присутствуют « + » и «– », а у АС на электродах – «ноль» и «фаза». В случае трёхфазной сети 4 контакта: один «ноль» и три «фаза».
- Принцип вырабатывания – постоянный ток получают в результате электролитических и химических реакций окисления, работы генераторов постоянного тока и солнечных батарей. Переменный ток вырабатывается трёхфазными генераторами.
- В преобразовании – оба вида получают путём превращения одного в другой посредством полупроводниковых выпрямителей и инверторов.
Для информации. В мире действует два головных стандарта частоты и напряжения в потребительской сети переменного тока. Европейский стандарт – 50 герц, 220-240 вольт, и американский – 60 герц, 100-127 вольт.
Преимущества переменного тока
Аккумуляторные батареи практичны как источник постоянного электричества. Однако бесконечно снабжать токоприёмники энергией без подзарядки они не могут. Поэтому создание изменяющегося во времени тока и его доставка потребителю – главные задачи энергосистемы страны. К преимуществам этого вида относятся:
- лёгкость преобразования из одной величины напряжения в другую;
- допустимость передачи на дальние расстояния по ЛЭП к распределительным сетям;
- возможность реализовывать трёхфазные схемы энергоснабжения;
- ориентированность на потребителей производственных предприятий, рассчитанных на питание переменным током.
Снизить или повысить величину напряжения переменного тока проще. Для этого стоит только пропустить его через трансформатор. Большой КПД этого преобразователя – 99%, потеря мощности – лишь 1%. Трансформатор, имея отдельные обмотки по напряжению, ещё разделяет высокое напряжение от низкого, что допускает возможность разделить установки до 1000 В и свыше 1000 В.
Атомные и гидроэлектростанции расположены в местах, отдалённых от центральных районов расположения потребителей. Поэтому напряжение добытой электроэнергии повышают до сотен кВт, чтобы снизить потери при транспортировке, и передают по ЛЭП в нужное место, где снова понижают.

Применяя трёхфазное переменное напряжение, повышают производительность структуры энергосистемы. Передача одинаковой мощности трёхфазной сети требует меньшего количества проводников, в отличие от однофазной линии.
Важно! Если сравнить два трансформатора одинаковой мощности, то габариты однофазного трансформатора больше, чем трёхфазного. Изготовление асинхронных двигателей обходится дешевле, чем двигателей постоянного тока. В них отсутствуют коллектор и щётки, по мощности при одинаковых размерах асинхронные двигатели обгоняют постоянные в 2-3 раза.
Недостатки постоянного тока
Кроме того, что источники этого вида тока имеют непростую конструкцию, они сложнее в эксплуатации. При КПД, равном 94%, предельная мощность этих машин не выше 20 МВт. Присущи и другие минусы:
- для повышения или понижения напряжения применяют сложные схемы;
- двигатели, рассчитанные на потребление такого электричества, также конструктивно сложны и недешевы;
- развязка низкого и высокого напряжения требует сложных решений.
Полностью отказаться от таких источников и потребителей не получается, так как они востребованы и имеют свои преимущества.
Недостатки переменного тока
При передаче энергии изменяющего направление тока на большие расстояния возникают затруднения. Создание Единой Энергетической Системы выявило ряд недостатков:
- пропускная способность кабельных линий низкая из-за ёмкости между проводниками и землёй;
- при объединении и кольцевании ветвей системы, расположенных друг от друга на больших расстояниях, невозможно выполнить синхронизацию станций;
- пороговый предел устойчивости, необходимый для согласования, заканчивается на длинах линий свыше 500 км, при этом требуется повышение напряжения до 450 кВ, что приводит к удорожанию оконечного оборудования.
К сведению. При повышенном напряжении у воздушных линий возникает коронный разряд. Это процесс ионизации у проводников с малым радиусом. Чтобы в этом случае не происходило стекание электричества, приходится увеличивать диаметр проводов, это ведёт к удорожанию линии.
Преимущества постоянного тока
Какие качества делают незаменимым постоянный ток? К плюсам относятся:
- в цепях нет реактивной мощности, которая приводит к потерям;
- параллельно работающие генераторы нет необходимости синхронизировать;
- повышенная дальность передачи энергии в больших объёмах;
- безопасность для человека при соприкосновении с токоведущими жилами.
К достоинствам добавляется то, что такое электричество, как постоянный ток, течёт по всему сечению проводника, поэтому потери мощности минимальны.

История появления и «войны токов»
Никола Тесла и Томас Эдисон не дожили до того момента, когда представитель компании Consolidated Edison поставил точку в борьбе двух технологий. Переменный электрический ток одержал победу. В 2007 году ведущий инженер компании отсоединил кабель, символизирующий питание Нью-Йорка постоянным током.
Сербский учёный Никола Тесла ещё в 1882 году придумал, как применить эффект вращающегося электромагнитного поля. В то время Эдисон уже ввёл в строй 2 электростанции, вырабатывающие постоянный ток, и организовал производство кабелей, устройств освещения и динамо-машин. Тесла одно время работал в компании Эдисона и ремонтировал машины постоянного тока. Эдисон обещал Николе заплатить за проекты по модернизации двигателей, но выплатить вознаграждение за проведённую работу отказался. Тесла продал патенты своих изобретений Джорджу Вестингаузу, президенту компании Westinghouse Electric Corporation за 1 млн. долларов. Первая электростанция на 500 В изменяющего свою полярность электричества запущена в 1886 г. Война токов продолжалась более века.
Источники постоянного электрического тока
Для его получения используют специальный генератор, работа которого основана на законе электромагнитной индукции – ЭДС. Если вращать металлическую рамку, в зоне действия электромагнитного поля возникнет ЭДС, и по рамке потечёт электричество.

Внимание! Увеличение ЭДС получают повышением силы поля или скорости вращения рамки. Снижения пульсации полученного движения электричества добиваются добавлением числа рамок.
Немеханические производители электричества постоянной природы:
- солнечные батареи;
- гальванические элементы;
- термохимические элементы.
Аккумуляторы энергии из этой группы ограниченного срока действия и требуют периодической подзарядки.

Применение
Использование в электронике для питания схем – это не конечные варианты применения DC. Постоянный ток нашёл употребление в следующих случаях:
- в электролизе – получение в промышленных масштабах металлов из солей и растворов;
- гальванопластике и гальванизации – покрытие металлами электропроводящих поверхностей;
- в сварочных работах – работа с нержавеющей сталью;
- на транспорте – двигатели трамваев, электровозов, троллейбусов, ледоколов, подводных лодок;
- в медицине – ввод лекарственных препаратов в организм при электрофорезе.
Для информации. В СССР начинали электрификацию железной дороги постоянным током на участках Баку – Сурамский перевал и Сабучини. До Великой Отечественной войны напряжение составляло 1,5 кВ, потом было переведено на 3 кВ. В общей сложности половина ж/д линий работало от этого вида тока.
Переменный ток
Вынужденные гармонические электромагнитные колебания – это синусоидальный ток. Колебания происходят с частотой 50 Гц в секунду. Напряжение и ток за период в среднем равны нулю.
Чем постоянный ток отличается от переменного, и каков его путь от источника до потребителя?
Ток постоянный не совершает колебаний, в этом постоянный и переменный ток различаются. Подача Direct Current – DC к потребителям также происходит по проводам и кабелям. Действуют до сих пор ЛЭП Волгоград – Донбасс.
Преобразование
К бытовым приборам, требующим снабжение схем электричеством типа DC, его подают через блоки питания. Это схемы, включающие в себя понижающий трансформатор и выпрямляющий блок. При подключении блока питания к устройству следят за совпадением их параметров по напряжению и мощности. Параметры указаны на корпусе прибора.

В настоящий момент оба вида электричества отлично уживаются в современном мире. Схемы смешанного питания потребителей только дополняют друг друга.
Видео
Что такое переменный ток
Используемое человеком электричество имеет два рода происхождения: постоянный и переменный. Чем отличается переменный ток от постоянного, нельзя ли использовать только один род? Эти и другие вопросы будут рассмотрены ниже, а начнем с понятия, что такое ток?
Как образуется переменный ток
Чтобы заряды перемещались по проводнику, а это и есть сила тока, необходимо иметь источник питания. Этот источник создает электродвижущую силу, заставляющую перемещаться заряды. В постоянных источниках это могут быть химические, механические и другие способы получения этой силы. Для промышленного переменного источника используется в основном механический способ.
Чтобы понять этот способ представим себе металлическую проволоку, согнутую в виде рамки. После чего внесем ее в подковообразный магнит. Под действием магнитного поля свободные электроны переместятся в один из концов рамки. Если ее развернуть на 180о, то магнитное поле переместит электроны в другой конец рамки. В тот момент, когда рамка вращалась, перемещались заряды, создавая ток.

Если рамка будет вращаться с определенной скоростью, то в ней будут перемещаться и заряженные частицы. Если отобразить перемещение электронов по рамке графически, то получим синусоиду. Она покажет, как напряжение возрастает при приближении рамки к магниту и убывает при удалении ее от магнита. Конечно, обычным вольтметром вряд ли удастся обнаружить такое напряжение, но если рамка будет состоять из множества витков провода, то напряжение поднимется.
На электростанциях происходит принципиально то же самое. Большие катушки вращаются внутри постоянных магнитов либо магниты вращаются вокруг катушек, что на принцип действия не оказывает никакого влияния. Так получают переменное напряжение, которое, в отличие от постоянного, меняет свое направление или силу.
История открытия переменного напряжения
Постоянный ток известен давно, но серьезное отношение к нему проявил Георг Симон Ом – немецкий физик. Закон, названный в его честь, был открыт в 1826 году. Его начинания подхватил Томас Алва Эдисон, американский предприниматель и изобретатель.

В 1884 году к Эдисону устроился ученый, изобретатель, инженер, физик Никола Тесла. Его занимала мысль сделать электродвигатель с вращающимся магнитным полем. Сегодня такой двигатель называется асинхронным. Работая у Эдисона, молодой изобретатель усовершенствовал электродвигатели своего работодателя, но вместо ожидаемой награды получил лишь насмешку.
Уйдя от Эдисона, Тесла какое-то время был без денег, пока наконец не познакомился с нужными людьми. Дальнейшая жизнь прошла в воплощении некоторых своих мечтаний и постоянной борьбе со сторонниками постоянного тока в лице Томаса Эдисона. Эта борьба продолжалась даже после смерти участников и закончилась в 2007 году полной победой переменного тока над постоянным.
Почему переменный ток используется чаще постоянного?
Если ответить коротко на этот вопрос, то все дело в его многофункциональности. Что можно делать с переменным напряжением, вот несколько направлений:
- подвергать трансформации;
- менять частоту;
- получать многофазные цепи;
- в некоторых областях дает лучшие характеристики.
Одно из главных преимуществ – возможность трансформации. Правда, постоянное напряжение можно также менять с помощью делителя напряжения или умножителя, но это будет одна электрическая цепь. Для гальванической развязки нужен трансформатор, в котором используется две и более независимых цепей.
Кроме того, трансформатор намного проще умножителей напряжения и позволяет значительно увеличивать напряжение. Почему так важно повышать напряженность цепи? Дело в том, что по закону Ома, чем выше напряжение, тем меньше потери при передаче, а это дает возможность передавать электроэнергию на большие расстояния.
Все радиоустройства для передачи сигнала без проводов используют переменную составляющую, называемую промежуточной частотой. Набор частот позволяет использовать множество радиоустройств, которые не мешают друг другу. Длинноволновые сигналы способны распространяться на большие расстояния, огибая Землю. Ультракороткие частоты, напротив, распространяются по прямой, позволяя создавать радиотелескопы для изучения космоса, недр Земли, океана.

При использовании синусоидального тока возникает возможность увеличивать мощность передачи к электропотребителям. Достигается это увеличением числа фаз. Мощность однофазного и трехфазного двигателя будет значительно отличаться при одних и тех же габаритах. А передача большей мощности будет достигнута в трехфазной сети при одинаковом сечении проводов.
Чтобы выпрямить переменный ток, достаточно использовать несложное устройство, называемое выпрямитель, а вот из постоянного сделать переменный синусоидальный с помощью радиодеталей будет несколько хлопотно. До сравнительно недавнего времени для освещения использовались лампы накаливания. Использование постоянного и переменного тока дают разные результаты цветопередачи, белый свет дают лампы переменного тока. Правда, современные лампы, работающие на фотодиодах, используют постоянную составляющую, но по мощности они еще не достигли своих собратьев.
Никола Тесла: вопросы безопасности и эффективности
Когда Никола Тесла ушел от Томаса Эдисона, последний устроил информационную атаку против изобретений Николы Тесла, уверяя, что переменный ток опасен для жизни человека. На самом деле все дело в величине напряжения, которое подавалось на испытуемых животных. Тесла для опровержения такого утверждения пропускал через себя ток высокой частоты. И это действительно так. Чем выше частота, тем меньше заряд проходит через внутренности человека, скапливаясь на его коже.
Что касается эффективности, то разница работы ламп накаливания говорит сама за себя. Их мощность и цветовая передача была лучше у Николы, чем у Томаса. Поэтому у Николы появлялось все больше заказчиков для освещения различных объектов. Кроме того, передача сигнала по воздуху могла осуществляться только с переменной волной, что, конечно же, невозможно для постоянного тока. Но как распространяются радиоволны?
Через эфир
Еще в XVII веке Рене Декарт выдвинул гипотезу о существовании эфира. Непонимание того, как передается свет в вакууме, подтолкнуло к такому предположению. Поэтому стали считать, что в любом пространстве существует некая физическая среда, обладающая способностью проводить через себя различные волны.
Однако разработка теории относительности сделала этот термин ненужным. Кроме того, сам факт того, что эфир, как он понимался раньше, не имеет смысла, привело к устранению из употребления. Например, теория эфира противоречила закону распространения волн в газах и жидкостях. Само понимание природы света также опровергло такую гипотезу.

Вибратор Герца, эфир, электромагнитная волна
Еще одним сторонником, причем сам того не подозревая, стал Генрих Рудольф Герц. В 28 лет, став профессором физики, он начал проводить опыты по передаче радиоволн на расстоянии. В его распоряжении были лишь примитивные элементы оборудования: гальванические элементы, катушки, электроды с латунными шариками и всевозможные пластины и сферы из цинка, выполнявшие роль конденсатора.
Подключив пластины параллельно катушке, он получил колебательный контур, в котором длина волны менялась за счет перемещения пластин вдоль катушки или изменения расстояния между пластинами. Этот контур подключался к источнику питания. Другая катушка располагалась в непосредственной близости от первой. Таким образом, получился повышающий трансформатор, увеличивавший выходящее напряжение.
Концы второй катушки он подсоединял к двум электродам с шариками на концах. Высокое напряжение, получаемое в результате трансформации, подавалось на шарики, и между ними происходил разряд в виде большого искрового разряда. Так был построен передатчик радиоволн.
На расстоянии нескольких метров он установил приемник в виде разомкнутого кольца или рамки. На их концах также были закреплены шарики. Прием проверялся разрядом между шарами, что доказывало возможность передачи сигнала на расстояние по воздуху. Свое устройство он назвал вибратор Герца. С тех пор 1888 год стал считаться годом открытия электромагнитных волн.
Генрих также предполагал существование эфира, с помощью которого осуществлялась передача, однако позднее Хендрик Лоренц доказал несостоятельность такой гипотезы. Тем не менее разработки резонансного контура, доказательства существования электромагнитных волн и другие исследования прочно обосновались в современной радиотехнике. Также в его честь была названа единица, измеряющая частоту.
Где используется переменное напряжение
О наличии переменного тока говорят такие знаки
или ≈, а также буквы AC. Такое обозначение можно найти на многих электроприборах, например, индукционных плитах. В них используется мощное электромагнитное поле, разогревающее дно металлической посуды. Эти же волны, но более мощные, используются в до́менных печах, которые установлены в огромные катушки. Также применяются катушки меньшего размера в сталепрокатных или прессовочных цехах. Они позволяют очень быстро разогревать металл, причем действуют точечно, что приносит хорошую экономию электроэнергии.

Обозначаться знаком переменности могут электрические котлы, водонагреватели, холодильники, утюги и множество других бытовых приборов. Двигатели синхронные и асинхронные, одно-, двух- и трехфазные находятся на различных предприятиях и в домах. Но без чего нельзя представить современного человека, так это мобильный телефон и интернет.
Передача информации
Осуществление передачи информации происходит практически таким же образом, как это было еще и более ста лет назад. Правда, технология ушла далеко, но принцип остался тот же. С помощью колебательного контура вырабатывается так называемая несущая частота, а на нее накладывается сигнал. Чтобы расшифровать полученный такой сигнал, используют декодер. Обычно используются высокие частоты, которые передаются по прямой линии.
Этот же метод связи применяется для связи с самолетами и спутниками. Спутники могут служить в качестве промежуточного звена, принимая сигнал из одной точки земного шара и передавая в другую.
Электрификация железных дорог на переменном напряжении
Железные дороги также не остались в стороне. Тепловозы постепенно меняют на электровозы. По способу получения питания они разделяются на следующие типы:
- контактные;
- аккумуляторные;
- контактно-аккумуляторные;
- бесконтактные.
В основном для грузоперевозок и пассажиров используют контактную сеть постоянного или переменного тока. Если используется переменный вид, то делают однофазную сеть, так как трехфазную сложно создавать. Интерес представляет бесконтактная передача. Вдоль путей прокладывают шину и на нее подают ток высокой частоты. Создаваемый магнитный поток улавливается приемником электровоза и передается на электродвигатели.
Хотя поначалу и шла война между сторонниками постоянного и переменного тока, современная жизнь показала, что человеку или, вернее, электрооборудованию, используемому человеком, нужен и тот и другой род.