Принцип работы компенсатора реактивной мощности

Конструкция, назначение и принцип работы компенсаторов реактивной мощности (КРМ)

Конструкция, назначение и принцип работы компенсаторов реактивной

В промышленном производстве наблюдается опережающий рост потребления реактивной мощности по сравнению с активной. Основными потребителями реактивной мощности являются асинхронные двигатели — на их долю приходится 65-70 % реактивной мощности, потребляемой предприятием, на трансформаторы — 20-25 %, на другие приёмники — около 10 %. В качестве компенсирующих устройств на промышленных предприятиях широко применяются батареи конденсаторов (БК): шунтовые БК — для генерации реактивной мощности в узлах сети (поперечная компенсация); устройства продольной компенсации (УПК) — для уменьшения реактивного сопротивления линий.

Шунтовые БК включают как на шины 0,4-10 кВ подстанций (групповая компенсация), так и на зажимы крупных потребителей реактивной мощности (индивидуальная компенсация).

К таким устройствам относятся также групповые автоматизированные конденсаторные установки (АКУ) и локальные КРМ. В отличие от АКУ КРМ состоят из К.-Ь-С деталей, соединенных специальным образом, и подключаются непосредственно на зажимы потребителя или через кабель длиной до 40 м.

Это дает возможность не только компенсировать реактивную мощность (функция АКУ), но и уменьшить потребление активной мощности двигателем.

Чтобы эффект был максимальным, КРМ подбирают индивидуально к каждому двигателю при помощи набора переносных подстроечных К-Ь-С узлов, смонтированных в одном блоке. По полученным данным на заводе изготавливают КРМ для обследованного двигателя.

Чтобы получить экономию активной энергии при работе двига% и снижение потребляемой реактивной мощности до 5-8% при сроке окупаемости КРМ за 2,5-3 года, необходимо выполнение следующих условий:

— у работающего двигателя должен быть со5 ц> 1

Закрытое акционерное общество «Измеритель-авто»

Компенсаторы

для экономии электроэнергии на Вашем предприятии

КРМ належное, простое п обслуживании и нелорогое устройство,

включаюшее в себя результаты исслелований параметров

потребляемой электрической энергии.

Излелие имеет Сертификат соответствия

РОСС Ш.ЛЕ05.Н01540

Предлагаемое устройство имеет в своем составе блоки конденсаторов специального исполнения со множеством параллельных цепей, состоящих из последовательно соединенных емкости и индуктивности, параметры которых являются расчетными. Поскольку только точный подбор параметров КРМ дает необходимый экономический эффект, их выбор и настройка для каждого электроприемника осуществляется индивидуально. Необходимо отметить, что подобных результатов нельзя достичь, применяя групповые компенсаторы.

Новизна технологии вносит изменения в эксплуатационные характеристики злектроприемников. Так, включение КРМ в работу с асинхронным двигателем позволит уменьшить кратность пускового тока и повысит КПД данного двигателя.

Полная компенсация

Совместная работа компенсатора с нагрузкой позволяет уменьшить ток на 40%. На эту же величину разгружаются не только генераторы энергосистемы, но и линии электропередачи Вашего предприятия. Вследствие компенсации потока реактивной мощности (до 100%) уменьшаются и потери активной мощности на ее передачу и, что немаловажно, уменьшаются потери напряжения всети.

Применение оборудования

КРМ применяют в трехфазных распределительных сетях частотой 50 Гц с напряже­нием 0,4 кВ, Компенсатор является индивидуальным дополнением к каждому электроприемнику индуктивного характера: сварочные трансформаторы, индукционные печи, асинхронные двигатели и др.

Рекомендуем в первую очередь рассмотреть возможность внедрения КРМ в приводах с ДЦ — как наиболее масштабных потребителей реактивной моцности.

Что такое УКРМ и какие проблемы решает устройство?

Как часто российские пользователи (домовладельцы и производственные предприятия) получают некачественную электроэнергию и переплачивают за энергоресурсы по причине неэффективности систем энергообеспечения? Практически всегда. И это несмотря на постановления Правительства РФ и приказы Минэнерго, которые вступили в силу более 10 лет назад. А проблема малой эффективности и повышения качества решается – достаточно установить устройство компенсации реактивной мощности с подходящими в конкретной ситуации характеристиками.

Что такое УКРМ

Устройство компенсации реактивной мощности – устройство, поглощающее «лишнее» электричество, не приносящее пользы.

Поток электричества с УКРМ и без установки

Чем мощнее энергопоток по кабелям, тем больше излишков остается из-за колебаний потоков. Результат: износ и перегрев проводов, нецелевые расходы электроэнергии (переплаты), при использовании мощного оборудования повышен риск поломки техники.

Группа «РУСЭЛТ» выпускает приборы для использования в промышленности. В зависимости от условий эксплуатации мы предлагаем различные модели устройств:

  • КРМ-0,4(от 20 до 1000 кВар) – используются для автоматического и ручного регулирования мощности;
  • КРМ-Ф (от 20 до 1000 кВар) кроме компенсации выполняют вторую немаловажную функцию – фильтрации;
  • КРМ-MINI (20, 30, 40 кВар) – управляемые устройства, компенсирующие мощность электричества в сетевых кабелях.

Приборы рассчитаны на промышленную эксплуатацию в умеренных климатических условиях. Полная работоспособность сохраняется в температурном диапазоне -40-+40°С, рекомендованная влажность до 80%.

Конструкция и принцип действия


Конструкция установки

Агрегат состоит из пяти функциональных блоков:

  • Батарей-конденсаторов, которые соединяются по схеме «треугольник» с разрядными резисторами.
  • Пускателей и дополнительной контактной группы, которые обеспечивают предварительный заряд конденсирующих батарей.
  • Предохранителей, минимизирующих риски поломок из-за резких скачков напряжения.
  • Разъединителя (в некоторых моделях автоматического выключателя).
  • Регулятора коэффициента мощности.

Компенсация реактивной мощности происходит по следующей схеме:

Измерительная система в электронном формате выполняет контроль реактивной и активной энергии (измеряет напряжение токов в сети).

Контроллер (регулятор) проводит замеры мощности, подключая или отключая конденсаторы по мере необходимости. На основании замеров и измерений показания сравниваются с эталонной величиной, при наличии отклонений от заданных параметров устройство переключает аппарат для обеспечения необходимого значения. Проще говоря, УКРМ обеспечивает снижение реактивной энергии при минимальном цикле переключений, чем повышает КПД энергоносителей и снижает риск неисправностей комплектующих электросетей.

Прибор регулярно измеряет расхождение фаз тока и напряжения и меняет свою емкость в зависимости от потребительской необходимости

Как установка помогает экономить деньги?

Установка КРМ, используется в промышленности, при эксплуатации в тандеме
с электродвигателями, которые и являются основными потребителями реактивной мощности. Если «полезная» энергия тратиться на работу мотора, то реактивная приводит к снижению его эксплуатационных преимуществ. например, увеличивается риск преждевременной поломки, чаще нужны остановки оборудования для охлаждения, что отражается на производительности предприятия.

Без УКРМ пользователь платит и за бесполезную энергию

Реактивная доля электричества «гоняется» по проводам, не принося пользы, а из-за ее избытка возникает перегрев, обеспечивается дополнительная нагрузка на сеть и оборудование. Итог: у пользователя двойная потеря – переплата за нецелевую электроэнергию и повышенный риск поломок электрооснащения. А потери и риски сводятся к минимуму без значительных трат – покупкой и установкой УКРМ, И чем больше мощность потребляемой энергии, тем больше выгод от использования компенсатора.

Выгоды использования

Повысить энергоэффективность энергоносителей, свести к нулю вероятность поломок промышленного оборудования помогает установка УКРМ. Причем этот вид компенсации экологичен, ни окружающей среде, ни здоровью человека не наносится какого-либо вреда. К преимуществам использования приборов потребители и специалисты относят:

  • увеличение полезной мощности (КПД электросетей и оборудования до 97%);
  • снижение количества фактически потребленной энергии на 20-30%;
  • увеличение стабильности уровня напряжения;
  • повышение срока безаварийной работы техники;
  • снижение расходов на коммунальные услуги (электроэнергию);
  • уменьшение пропускной способности в электросетях (минимизация риска перегрева и короткого замыкания).

Использование УКРМ в производстве позволяет избежать и таких расходов как штрафы со стороны органов госконтроля.

Компания «РУСЭЛТ» специализируется на производстве современной техники, которая помогает сократить энергетические затраты. Наша задача – удовлетворить запросы потребителей и предоставить устройства, на 100% соответствующие поставленным задачам. В ассортименте УКРМ различной функциональности, конструкции, типа работы, поэтому мы уверены – выбрать прибор с оптимальными характеристиками сможет каждый потребитель.

Технологии компенсации реактивной мощности

Компенсация реактивной мощности – это управление реактивной мощностью для повышения производительности сети переменного тока. В общем, проблема компенсации реактивной мощности связана с поддержкой нагрузки и напряжения. В дополнении целей, повышение значения коэффициента мощности системы для сбалансирования реальной мощности от сети переменного тока, усиление регулирования напряжения, а также устранение гармонических составляющих крупных колебаний нелинейных промышленных нагрузок. Поддержание напряжения, как правило, требуется для уменьшения колебания напряжения в линии электропередачи передачи. Компенсация реактивной мощности повышает стабильность системы переменного тока за счет увеличения максимальной активной мощности, которая может быть передана.

Принцип работы

Продольная и поперечная компенсации реактивной мощности используются для изменения естественных электрических характеристик систем переменного тока. Последовательная компенсация изменяет параметры передачи или системы распределения, в то время как поперечная компенсация изменяет эквивалентное сопротивление нагрузки. В обоих случаях, реактивной мощностью, которая течет через систему, можно эффективно управлять, повышая производительность системы в целом.

Поперечная компенсации реактивной мощности

Принципы и теоретические основы поперечной компенсации реактивной мощности будут объяснены ниже. Базовая система переменного тока состоит из источника питания VS, сопротивления линии с сопротивлением R + jX, и типично индуктивной нагрузкой VL (рис. 1). В системе без компенсации, ток источника IS и ток нагрузки IL одинаковы, потому что нагрузка, как правило, индуктивная, и ток отстает от напряжения нагрузки VL. Сдвиг характеризуется углом φ. В результате, источник питания должен генерировать полный ток нагрузки, поддержание высокого уровня тока источника от генератора и через линии электропередачи означает увеличение потерь мощности и снижение возможности передачи электроэнергии. Ток нагрузки IL можно разделить на две составляющие: IP, которая находится в фазе с VL и создает реальную мощность (активная мощность), и IQ, который отстает от напряжения VL на 90° и создает реактивную мощность. Тогда источник VS может генерировать только реальный составляющую IP , а IQ может быть создан около нагрузки устройством компенсации реактивной мощности.

Рисунок 1 – Принципы поперечной компенсации: (а) – системы без компенсации реактивной мощности, (б) – системы, которая использует поперечную компенсацию реактивной мощности. Схема, векторная диаграмма тока и напряжения приведены в каждой части рисунка

Если реактивная мощность (мнимая мощность) генерируется около нагрузки, то ток от источника уменьшается или сводится к минимуму, что снижает потери мощности и улучшает регулирование напряжения на нагрузке. Поперечную компенсацию можно осуществить тремя способами: с помощью конденсатора, источника тока или источника напряжения. В результате, система регулирования напряжения улучшается, и величина тока, требуемая от источника, уменьшается.

Продольная компенсация реактивной мощности

Компенсация реактивной мощности может быть также другого типа. Типичные системы поперечной компенсации используют конденсаторы для уменьшения эквивалентной реактивности составляющей питающей сети при номинальной частоте (рис. 2). Таким образом, последовательно включенный конденсатор C генерирует реактивную мощность, которая уравновешивает часть реактивного сопротивления линии. Это происходит вследствие резонанса напряжений в конденсаторе и индуктивности, направленных встречно (под углом 180°). Разрядник и варистор используются, чтобы избежать разрушения конденсатора С от перенапряжений.

Рисунок 2 – Продольная компенсация с защитой

Технологии

Традиционно для компенсации реактивной мощности используются фиксированные или механически переключаемые конденсаторы или катушки индуктивности, или синхронные компенсаторы. Тем не менее, в последние несколько десятилетий появились два новых семейства генераторов реактивной мощности с использованием силовой электроники: статические тиристорные компенсаторы и самостоятельно коммутируемые статические преобразователи.

Статические тиристорные компенсаторы

Как и в случае синхронных компенсаторов, в целях обеспечения точного контроля над всей реактивной мощностью, регулирование компенсатора было выполнено на тиристорах, преимущество которых заключается в быстром времени отклика и снижении затрат. Компенсаторы состоят из стандартных генераторов реактивной мощности (реакторов и конденсаторов), которые управляются с помощью тиристоров для обеспечения быстрого переключения реактивной мощности. Эти компенсаторы могут быть сгруппированы в две основные категории: тиристорно-коммутируемые конденсаторы (ТКК) и тиристорно-управляемые реакторы (ТУР).

В ТКК ступенчато-регулируемые конденсаторы индивидуально переключаются помощью двунаправленных тиристорных переключателей. Каждое однофазное отделение состоит из двух основных частей, конденсаторов и пары тиристорных коммутаторов. Конденсатор может быть включен с минимальной выдержкой, если тиристор включен в тот момент, когда напряжение на конденсаторе и напряжение сети имеют одинаковые значения. Несмотря на привлекательную теоретическую простоту тиристорно-переключаемых конденсаторов, их популярности препятствует ряд практических недостатков: компенсация реактивной мощности не является непрерывной, и каждый из конденсаторов требует отдельного переключателя-тиристора. Поэтому строительство экономически нецелесообразно.

ТУР использует двунаправленный переключатель, реализованый с помощью пары противоположно связанных тиристоров, в серии с L индуктивностью и шунтирующим конденсатором C (рис. 3). Поскольку используется фазовый угол для управления, получается непрерывный спектр потребления реактивной мощности. При увеличении угла тиристорного пропускания от 90° до 180° — ток реактора уменьшается. Это эквивалентно увеличению индуктивности, т.е. снижению реактивной мощности, потребляемой реактором. Основным недостатком этой конфигурации является генерация гармоник, которые заставляют реализовывать более сложной топологии (с пассивными фильтрами, с помощью дельта-соединения или двенадцати-импульсный конфигурации).

Рисунок 3 – Тиристорно-управляемые реакторы (ТУР)

Тиристоры используются также для продольной компенсации. Тиристорно-управляемый продольный компенсатор (ТУПР) представляет собой технологию, которая устраняет определенные проблемы в динамических системах передачи электроэнергии (рис. 4). ТУПР являются отличным инструментом демпфирования при соединении больших электрических систем. Кроме того, они уменьшают проблемы подсинхронного резонанса – явление, которое включает в себя взаимодействие между крупными энергоблоками ТЭС и компенсацией систем передачи.

Рисунок 4 – Тиристорно-управляемый продольный компенсатор (ТУПР)

Самокоммутируемые преобразователи

С развитием силовых полупроводниковых приборов (биполярные транзисторы с изолированным затвором IGBT) внимание было сосредоточено на коммутации компенсаторов реактивной мощности. Возможно несколько подходов, включающие источник тока и напряжения. Инвертор источника тока использует реактор с регулируемым постоянным током, а источник напряжения использует конденсатор с регулируемым напряжением постоянного тока. В самостоятельно коммутируемых компенсаторах реактивной мощности также применяется преобразователь напряжения (рис. 5).

Рисунок 5 – Cамокоммутирующийся преобразователь напряжения на IGBT транзисторе

Основными преимуществами собственной коммутацией компенсаторов реактивной мощности является значительное сокращение размера, стоимости и гармонических искажений. Самокоммутируемые компенсаторы для стабилизации систем передачи электроэнергии улучшают регулирование напряжения, обеспечивают правильный коэффициент мощности, а также правильный дисбаланс нагрузки. Кроме того, они могут быть использованы для реализации продольной и последовательной компенсации. Рисунок 6 показывает возможности поперечных компенсаторов реактивной мощности, реализованных с помощью самостоятельной коммутации на преобразователе напряжения. Управление реактивной мощностью осуществляется путем изменения амплитуды выходного напряжения Vmod, которое изменяется с помощью широтно-импульсной модуляции (ШИМ) (рис. 6 (а)). При Vmod больше напряжения на компенсаторе Vcomp, компенсатор генерирует реактивную мощность (рис. 6 (б)), а при Vmod меньше, чем Vcomp, компенсатор реактивной мощности потребляет энергию (рис. 6 (с)). Его принцип работы схож с синхронной машиной. Ток компенсатора может быть опережающим или отстающим, в зависимости от относительной амплитуды Vcomp и Vmod. Напряжение на конденсаторе VD, подключенного к цепи постоянного тока преобразователя, остается постоянным и равным эталонной величине V, реализуемое контуром управления обратной связью.

Рисунок 6 – Ток и напряжение источника, самокоммутируемого поперечного компенсатора реактивной мощности; (а) – топология компенсатора; (б) – ток и напряжение для опережеющей компенсации (Vmod > Vcomp); (с) – ток и напряжение для отстающей компенсации (Vmod

Для чего нужна компенсация реактивной мощности

Реактивная мощность и энергия, реактивный ток, компенсация реактивной мощности

Реактивная мощность необходима для создания переменных магнитных полей в индуктивных электроприемниках и не выполняет непосредственно полезной работы. Вместе с тем, реактивная мощность оказывает существенное влияние на такие параметры системы электроснабжения, как потери мощности и электроэнергии, пропускная способность и уровни напряжения в узлах электрической сети.

Реактивная мощность и энергия ухудшают показатели работы энергосистемы , то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива, увеличиваются потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи , что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности . Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Потребители реактивной мощности

Основные потребители реактивной мощности — асинхронные электродвигатели, которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а косинус фи уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40 .

Малонагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии , а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Структура потребителей реактивной мощности в сетях энергосистем (по установленной активной мощности):

Прочие преобразователи: переменного тока в постоянный, тока промышленной частоты в ток повышенной или пониженной частоты, печная нагрузка (индукционные печи, дуговые сталеплавильные печи), сварка (сварочные трансформаторы, агрегаты, выпрямители, точечная, контактная).

Суммарные абсолютные и относительные потери реактивной мощности в элементах питающей сети весьма велики и достигают 50% мощности, поступающей в сеть. Примерно 70 — 75% всех потерь реактивной мощности составляют потери в трансформаторах.

Так, в трехобмоточном трансформаторе ТДТН-40000/220 при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12%. На пути от электростанции происходит самое меньшее три трансформации напряжения, и поэтому потери реактивной мощности в трансформаторах и автотрансформаторах достигают больших значений.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок) .

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

Компенсация реактивной мощности обеспечивает соблюдение условия баланса реактивной мощности, снижает потери мощности и электроэнергии в сети, а также позволяет осуществлять регулирование напряжения посредством применения компенсирующих устройств.

Значительного экономического эффекта от компенсации реактивной мощности можно достичь при правильном сочетании различных мероприятий, которые должны быть технически и экономически обоснованы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Компенсация реактивной мощности — Конденсаторные установки КРМ, УКМ, АКУ, УКРМ

Применение автоматических конденсаторных установок КРМ позволяет:

  • снизить потребляемый из сети ток (на 30-50% в зависимости от действующего значения cos(φ)),
  • практически свести к нулю оплату за реактивную энергию,
  • значительно увеличить пропускную способность распределительной сети (наращивание потребляемой мощности предприятия без реконструкции энергосистемы) и ее надежность.

Таким образом, эффективно «разгружается» электросеть, что позволяет снизить на 5-15% потребление активной энергии.

Основанная в 1993 году, НПО «ПРОМЭЛЕКТРОАВТОМАТИКА» является одним из крупнейших российских производителей и поставщиков оборудования и комплектующих для компенсации реактивной мощности, компенсатор реактивной мощности. Имея колоссальный опыт в этой области, специалисты нашей компании смогут решить любые поставленные перед ними задачи, начиная от сбора и анализа параметров электросети предприятия и заканчивая сдачей объекта «под ключ».

Применение конденсаторных установок КРМ-0,4 (УКМ-58), поставляемых НПО «ПромЭлектроАвтоматика» — эффективное решение вопросов энергосбережения и повышения надежности работы электрооборудования.

Видео: виды компенсации реактивной мощности

Низковольтные конденсаторные установки УКМ58 (аналог КРМ, АКУ, УКРМ)

Автоматические конденсаторные установки УКМ58 (аналог КРМ-0,4, АКУ, УКРМ) предназначены для повышения коэффициента мощности cos(φ) путем компенсации реактивной мощности.

Низковольтные конденсаторные установки КРМ-0,4 (аналог УКМ58, АКУ, УКРМ, УККРМ)

Предназначены для компенсации реактивной мощности нескольких индуктивных нагрузок, присоединенных к одному распределительному устройству в электросети напряжением 0,4 кВ.

Конденсаторные установки с фильтрами высших гармоник КРМФ

Предназначены для компенсации реактивной мощности в сетях с высоким уровнем гармонических составляющих.

Фильтры силовые высших гармоник 10 кВ

Одна из основных и перспективных мер по уменьшению влияния вентильных преобразователей на сеть и улучшению тем самым качества напряжения.

Высоковольтные конденсаторные установки для двигателей 6-10 кВ

Cостоят из каскадов компенсации одинаковой или различной мощности, все основные компоненты системы интегрированы в шкафах-модулях.

Высоковольтные конденсаторные установки КРМ (УКЛ56, УКЛ57)-6,3 (10,5) кВ

Предназначены для повышения значения коэффициента мощности Cos (φ) электроустановок промышленных предприятий и распределительных сетей напряжением 6 (10) кВ частоты 50 Гц.

Батареи статических конденсаторов (БСК)

Используются для возрастания мощностей в энергосетях. Это позволяет создавать реактивную мощность не в отдаленных станциях, а непосредственно в местах, где происходит наиболее серьезная нагрузка.

Установки КРМТФ (ДФКУ, АФКУТ) с фильтрами высших гармоник

Тиристорные конденсаторные установки КРМТФ (ДФКУ, АФКУТ) предназначены для компенсации реактивной мощности в сетях с высоким уровнем гармонических составляющих и быстроизменяющейся нагрузкой.

Установки PFC-FT2-ST для запуска двигателей

Тиристорная конденсаторная установка PFC-FT2-ST – это работающая в реальном времени динамическая система компенсации реактивной мощности, использующая проверенные промышленные технологии для новых решений, связанных с запуском мощных двигателей.

Система VMTEC PFC-TURBO

Комплексное решение проблемы Падения напряжения (перепады напряжения, пониженное напряжение). Разработан, чтобы преодолеть падения напряжения до 0.2 p.u и сохранить падение напряжения на уровне не ниже 85% с типичной продолжительностью до 3 секунд.

Тиристорные конденсаторные установки КРМТ (АКУТ, УКРМТ)

Тиристорные быстродействующие автоматические конденсаторные установки КРМТ предназначены для компенсации реактивной мощности в электросетях с резкопеременной нагрузкой (компенсация в реальном времени).

Предназначены для компенсации реактивной мощности (КРМ), в том числе для местной компенсации (подключение конденсаторов параллельно двигателям и т.п.).

Регуляторы (контроллеры) для компенсации реактивной мощности

Предназначены для использования в автоматических установках компенсации реактивной мощности. Обеспечивают автоматическое регулирование коэффициента мощности cos(φ) при отклонении значения от заданного.

Контакторы (пускатели) для компенсации реактивной мощности

Предназначены для использования в автоматических конденсаторных установках КРМ (УКМ58) на напряжения 0,4-0,69 кВ.

Дроссели фильтрации гармоник (реакторы)

Предназначены для использования в фильтрокомпенсирующих конденсаторных установках КРМФ и служат для защиты конденсаторных батарей от присутствующих в компенсируемой сети гармонических составляющих.

Высоковольтные конденсаторы

Конденсаторы позволяют решать все виды задач по компенсации реактивной мощности в сетях среднего напряжения, они оснащены разрядными резисторами, снижающими напряжение на выводах косинусного конденсатора до 75 В за 10 минут, и встроенными предохранителями.

Высоковольтные вакуумные контакторы 6-10 кВ

Высоковольтные вакуумные контакторы используются для защиты двигателей, трансформаторов, конденсаторов в линиях питания от сети переменного тока.

Выключатели нагрузки, разъединители

Выключатели нагрузки предназначены для применения в шкафах систем распределения энергии, комплектных трансформаторных подстанциях и другом низковольтном оборудовании распределения и передачи электроэнергии.

Конденсаторы косинусные высоковольтные КЭП, КЭП0, КЭП1, КЭП2, КЭП3 (КЭК, КЭК0, КЭК1, КЭК2, КЭК3)

Предназначены для повышения коэффициента мощности электроустановок переменного тока частотой 50 Гц в сетях напряжения 6,3…10,5…12,7 кВ.

Портативный измеритель параметров электрической энергии G4500

Прибор Elspec G4500 BLACKBOX Portable, с встроенной возможностью постоянной регистрации формы волны, является самым продвинутым анализатором качества электроэнергии на рынке.

Многофункциональный анализатор качества электроэнергии для сетей среднего и низкого напряжения SIEMOS PQ

Система анализа качества электроэнергии для трехфазных сетей идеально подходит для ежедневного использования при определении и анализе проблем, связанных с качеством электроэнергии.

Принцип работы автоматической конденсаторной установки КРМ состоит в поддержании значения коэффициента мощности потребителя на заданном уровне (примерно до 1) путем отслеживания в режиме реального времени изменений нагрузки и подключения/отключения необходимого числа косинусных конденсаторных батарей.

Основную нагрузку электросети современного промышленного предприятия составляют электрические машины (двигатели, трансформаторы, генераторы), для работы электромагнитных систем которых необходима реактивная энергия, которая, в свою очередь, предопределяет создание фазового сдвига (φ) между напряжением и током. При включении нагрузки из сети потребляется не только активная энергия, но и реактивная, что приводит к увеличению полной мощности в среднем на 20-25% по отношению к активной. Соотношение между полной и активной мощностью, выраженное через косинус угла φ, называется коэффициентом мощности cos(φ).

При незначительной нагрузке (холостой ход) фазовый сдвиг увеличивается, а коэффициент мощности cos(φ) уменьшается. Если не использовать компенсацию реактивной мощности, то итоговый коэффициент мощности всей энергосистемы будет минимален, а потребляемый из сети ток будет увеличиваться при той же потребляемой из сети активной мощности.

Для того, чтобы реактивная мощность не передавалась по сетям, а вырабатывалась в местах ее потребления, широко применяют автоматические установки компенсации реактивной мощности КРМ (УКМ58, УКРМ, АКУ), основными элементами которых являются конденсаторы. Конденсаторная установка КРМ – это электроприемник с емкостным током, который при работе формирует опережающую реактивную мощность для компенсации отстающей реактивной мощности, генерируемой индуктивной нагрузкой.

В зависимости от подключенного к сети оборудования применяют следующие установки компенсации реактивной мощности:
— автоматические низковольтные конденсаторные установки КРМ, УКМ58, УКРМ, АКУ;
— высоковольтные автоматические конденсаторные установки УКЛ56, УКЛ57 и нерегулируемые конденсаторные установки УКЛ, УКП;
— тиристорные конденсаторные установки КРМТ, УКМТ, АКУТ;
— фильтрокомпенсирующие конденсаторные установки КРМФ;
— тиристорные конденсаторные установки с фильтрацией высших гармоник КРМТФ.

Конденсаторная установка цена

Чтобы узнать цену конденсаторной установки, обратитесь, пожалуйста, к нашим специалистам. Наши менеджеры профессионально проконсультируют вас по конденсаторным установкам и ценам. Связаться с нами просто — все доступные способы расположены справа! Звоните, пишите, мы ждем Вас!

Дополнительная информация, консультации, цены

Мы предложим эффективное и экономичное решение. Воспользуйтесь опытом наших технических специалистов — заполните форму справа, или позвоните.

Расчет, производство и поставка конденсаторных установок. Установки компенсации реактивной мощности, в наличии и под заказ.