ЭЛЕКТРОлаборатория

Кабель с изоляцией из сшитого полиэтилена. Испытание повышенным напряжением
Приветствую Вас друзья.
Давненько не встречались. Надеюсь теперь наши встречи снова станут регулярными.
Сегодня хочу поговорить о испытаниях кабеля с пластиковой изоляцией. По крайней мере так его позиционируют производители, ссылаясь на ГОСТ Р 55025-2012 (МЭК 60502-2-2005) в сертификате соответствия.
Указанный мной ГОСТ имеет следующее название Кабели силовые с пластмассовой изоляцией на номинальное напряжение от 6 до 35 кВ включительно. Общие технические условия.
Настоящий стандарт распространяется на силовые кабели с пластмассовой изоляцией (далее — кабели), предназначенные для передачи и распределения электрической энергии в стационарных установках на номинальное переменное напряжение от 6 до 35 кВ включительно номинальной частотой 50 Гц.
Кабели согласно этого ГОСТа кроме прочего подразделяются по материалу изоляции токопроводящих жил:
— изоляция из поливинилхлоридного пластиката (В);

— изоляция из сшитого полиэтилена (Пв).

сшитый полиэтилен: Термореактивный материал, полученный посредством химической сшивки термопластичной композиции полиэтилена, удовлетворяющий требованиям 5.2.5.1, таблица 10, показатели 2 и 5. ГОСТ Р 55025-2012.
Появление кабелей с изоляцией из сшитого полиэтилена в нашей стране (в Россие) я связываю в основном со стремлением гнаться за всем «западным», как самым лучшим, не учитывая особенностей устройства нашей энергосистемы.
По мнению ряда ученых, например, Ивановского энергетического университета, кабели с изоляцией из сшитого полиэтилена разрабатывались для применения в системах с заземленной нейтралью (именно такие системы применяются за границей) у нас же сети 6 – 35 кВ в основном –сети с изолированной нейтралью. Отсюда и куча проблем возникающих при эксплуатации кабелей с изоляцией из сшитого полиэтилена. Но, впрочем, статья не совсем об этом.
Так же с появлением подобных кабелей возникли разногласия в подходе к проведению испытаний их изоляции повышенным напряжением.
Почему-то все решили, что лучший вариант испытания повышенным напряжением сверхнизкой частоты (СНЦ)(0,1Гц), и возник рынок установок СНЧ для испытания кабельных линий с изоляцией из сшитого полиэтилена.
Довожу до сведений тех кто не знает, что подобные установки стоят от 180 т.р. нашего производства до миллиона и больше – импортного.
А теперь вернемся к ГОСТ Р 55025-2012. Согласно п.10.6 этого ГОСТа
Кабели после прокладки и монтажа арматуры рекомендуется испытывать переменным напряжением 2U0 номинальной частотой 50 Гц в течение 60 мин или переменным напряжением U0 номинальной частотой 50 Гц в течение 24 ч, или переменным напряжением 3U0 номинальной частотой 0,1 Гц в течение 60 мин.
Допускается испытание кабелей с изоляцией из поливинилхлоридного пластиката постоянным напряжением 4U0 в течение 15 мин.
Наружная оболочка кабелей, проложенных в земле, должна быть испытана постоянным напряжением 10 кВ в течение 1 мин. Испытательное напряжение должно быть приложено между металлическим экраном или броней и заземлителем.
Хочу отметить что кабель с изоляцией из поливинилхлоридного пластиката это не кабель с изоляцией из сшитого полиэтилена.
U0 — Номинальное переменное напряжение между каждой из токопроводящих жил и землей, экраном или броней кабеля. Для 6кВ это примерно 3,5кВ; для 10кВ это 6кВ.
Как следует из ГОСТа совершенно ни к чему иметь установку СНЧ, т.к. время испытаний одно и тоже. Правда есть информация, что на большой длине кабеля в связи большой емкостью на переменном напряжении частотой 50Гц возникают проблемы – сильно увеличивается ток утечки.
Возможно по этой причине нигде не говорится о токе утечки для кабеля с изоляцией из сшитого полиэтилена.
Я честно говоря не пробовал, так как сталкивался в своей работе с кабелями не длиннее 30 м. На них все замечательно, да и ток утечки у меня в установке измеряется только при испытаниях выпрямленным напряжением.
На каком основании при испытаниях время уменьшают до 30 и даже 15 минут я не понимаю, хотя по тому же ГОСТу согласно п.5.2.2.7 кабели на строительной длине должны выдерживать в течение 5 минут воздействие переменного напряжения 3,5U0 частотой 50 Гц.
Если же кабель с изоляцией из сшитого полиэтилена испытывать выпрямленным напряжением, что я пробовал делать, то ток утечки мал (при напряжении 18кВ ток утечки 5-10мкА).
Кстати такое испытание допускает международный стандарт МЭК 60502.2, на основании которого разработан наш ГОСТ:
20.2.2 Испытание постоянным напряжением
Как альтернатива испытанию переменным напряжением, может производиться испытание постоянным четырехкратным напряжением 4 U0 в течение 15 мин.
ПРИМЕЧАНИЕ 1 Испытание постоянным напряжением может привести к пробою изоляции системы. Другие испытательные методы находятся на рассмотрении.
ПРИМЕЧАНИЕ 2 Для установок, которые уже находились в эксплуатации, могут использоваться более низкие напряжения и/или меньшие продолжительности испытаний. О величинах нужно договариваться, принимая во внимание время эксплуатации кабеля, тип окружающей среды, историю повреждений, а также цели, преследуемые при производстве испытаний.
Как видно в этом стандарте допускается испытание кабеля с изоляцией из сшитого полиэтилена выпрямленным напряжением и допускается изменение времени испытаний по согласованию сторон и исходя из состояния кабельной линии.
Последнюю редакцию стандарта МЭК 60502.2-2014 я не нашел. Возможно там есть какие-то изменения в плане испытаний.
Но пока действует ГОСТ Р 55025-2012 остальное не имеет значения.
Кроме того, никто не отменял ни ПУЭ, ни ПТЭЭП, ни РД 34.45-51.300-97.
В них четко сказано, что кабель с пластмассовой изоляцией испытывается повышенным выпрямленным напряжением
Кабель на 6 кВ испытывается напряжением 36 кВ ;
Кабель на 10 кВ испытывается напряжением 60кВ.
Время испытаний 10 или 5 минут.
Я конечно допускаю, что структура кабеля с изоляцией из сшитого полиэтилена отличается от кабеля с изоляцией из поливинилхлоридного пластиката, но видимо поэтому последний ГОСТом разрешается испытывать выпрямленным напряжением.
Скажу в заключении, что недавно провел испытание кабеля ВВГ-6кВ 3х70 в соответствии с ПУЭ и о чудо, кабель выдержал 36 кВ при токе утечки 80 – 100 мкА в течении 10 минут. Кабель вновь проложенный длинной от 50 до 70 м. Испытывалось 4 линии.
Так же отмечу, что и все кабели с изоляцией из сшитого полиэтилена которые я испытывал с 2012 года выдерживали испытания выпрямленным напряжением. Испытания проводились напряжением 3,5U0 в течении 15 минут кабели были как на 6кв так и на 10кВ, ток утечки составлял не более 15мкА. После проведения испытаний токоведущая жила соединялась с экраном с обоих сторон и заземлялась на сутки после чего кабель вводился в эксплуатацию. Правда длины кабелей были от 10 до 30 м. До сих пор все они успешно эксплуатируются.
Есть наверняка и негативные примеры. Но испытания проводятся для выявления некачественного оборудования. Возможно пробои возникают на кабелях, которые имели заводские дефекты либо муфты были сделаны некачественно с применением кустарного оборудования.
Следует задуматься и об этом.
Требования ГОСТ Р 55025-2012 в плане испытаний кабеля с изоляцией из шитого полиэтилена намного проще, чем кабель выдержал при заводских испытаниях и проще требований РД 34.45-51.300-97. По сути от кабеля требуется выдержать час его номинальное напряжение.
Остается лишь выбрать для себя каким напряжением испытывать:
Либо напряжением промышленной частоты,
Либо напряжением СНЧ.
Но это уж у кого какое есть оборудование.
Задумывайтесь друзья чаще и желаю Вам успехов.
Протоколы испытаний

ПРОТОКОЛ осмотра и проверки смонтированного электрооборудования распределительных устройств и электрических подстанций напряжением до 35 кВ включительно
ПРОТОКОЛ измерения сопротивления изоляции
ПРОТОКОЛ испытания силового кабеля напряжением выше 1000 В
ПРОТОКОЛ осмотра и проверки сопротивления изоляции кабелей на барабане перед прокладкой
ПРОТОКОЛ прогрева кабелей на барабане перед прокладкой при низких температурах
ПРОТОКОЛ осмотра кабельной канализации в траншеях и каналах перед закрытием
ПРОТОКОЛ механических испытаний сварных стыков стального (полиэтиленового) газопровода
ПРОТОКОЛ проверки полного сопротивления петли фаза — ноль сетях с глухозаземленной нейтралью
ПРОТОКОЛ испытания устройства защитного отключения УЗО
ПРОТОКОЛ проверки действия тепловых, электромагнитных расцепителей
ПРОТОКОЛ измерения сопротивления заземляющих устройств
ПРОТОКОЛ проверки работы автоматических выключателей и контакторов
ПРОТОКОЛ проверки наличия цепи между заземлёнными установками и элементами заземлённой установки
ПРОТОКОЛ испытания изоляции повышенным напряжением КЛ
ПРОТОКОЛ проверки релейной аппаратуры
ПРОТОКОЛ испытания вентильных разрядников
ПРОТОКОЛ испытания трансформаторного масла
ПРОТОКОЛ проверки наличия цепи между заземлителями и заземляемыми элементами
ПРОТОКОЛ испытания изоляции повышенным напряжением кроме КЛ
Протокол испытание изоляции в РУ
Протокол испытания быстродействующего автоматического выключателя
Протокол испытания вводов
Протокол испытания и анализа масла
Протокол испытания изоляторов опорных, подвесных, проходных
Протокол испытания кабеля
Протокол испытания разъединителя
Протокол испытания силового трансформатора
Протокол испытания сопротивления растеканию заземляющего контура
Протокол испытания трансформатора тока маслонаполненного
- 1
- 2
Исполнительная документация
- Строительные журналы
- Акты на прием-сдачу работ
- Протоколы испытаний
- Приказы, наряд-допуска, инструкции и другое
- Исполнительная документация пример
Техническая документация
- Сертификаты на материалы
- Линейная арматура для ЛЭП
- Провода и тросы для воздушных линий электропередач
- Железобетонные изделия
- Оборудование для ВЛ
- Трубы полиэтиленовые, электротехнические двустенные
- Трубы металлические и фасонные изделия
- Сварочные материалы
- Металлопрокат
- Рудные и нерудные материалы
- Лакокрасочные материалы
- Маслянные смазочно-охлаждающие жидкости
- Сети связи
- Отопление, вентиляция и кондиционирование, электроосвещение
- Прочие строительные материалы
- Паспорта на материалы
- Линейная арматура для ЛЭП
- Металлические опоры ЛЭП и комплектующие
- Сваи стальные винтовые
- Провода и тросы для воздушных линий электропередач
- Кабельная продукция
- Железобетонные изделия
- Оборудование для ВЛ
- Трубы полиэтиленовые, электротехнические двустенные
- Трубы металлические и фасонные изделия
- Сварочные материалы
- Металлопрокат
- Рудные и нерудные материалы
- Лакокрасочные материалы
- Кровельные и фасадные материалы
- Маслянные смазочно-охлаждающие жидкости
- Сети связи
- Отопление, вентиляция и кондиционирование, электроосвещение
- Прочие строительные материалы
- Детское игровое оборудование
- Материалы ВСП ЖД
- Эксплуатационная документация
- Электротехническое оборудование для ВЛ, ОРУ, ЗРУ, ОПУ, КТПН
- Охранно-пожарная сигнализация, электроосвещение, отопление, вентиляция и кондиционирование
- Сети связи
- Технологические карты ТК
- Сети связи (ВОЛС)
- Электрические сети (ЛЭП)
- Отделочные работы
- Окна
- Сварочные работы
- Свайные работы
- Восстановление и ремонт
- Автодороги и мосты
- Геодезические работы
- ТТК в AutoCAD
- Проекты производства работ ППР
Новые статьи
Опалубка для фундамента и стен
Оставьте заявку
И получите консультацию в течении 2-х часов
- Главная
- Полезное
- Инженеру ПТО
- Инженеру-проектировщику
- Отзывы
- Статьи
- Контакты
- Исполнительная документация
- Строительные журналы
- Акты на прием-сдачу работ
- Протоколы испытаний
- Приказы, наряд-допуска, инструкции и другое
- Исполнительная документация пример
- Техническая документация
- Сертификаты на материалы
- Линейная арматура для ЛЭП
- Провода и тросы для воздушных линий электропередач
- Железобетонные изделия
- Оборудование для ВЛ
- Трубы полиэтиленовые, электротехнические двустенные
- Трубы металлические и фасонные изделия
- Сварочные материалы
- Металлопрокат
- Рудные и нерудные материалы
- Лакокрасочные материалы
- Маслянные смазочно-охлаждающие жидкости
- Сети связи
- Отопление, вентиляция и кондиционирование, электроосвещение
- Прочие строительные материалы
- Паспорта на материалы
- Линейная арматура для ЛЭП
- Металлические опоры ЛЭП и комплектующие
- Сваи стальные винтовые
- Провода и тросы для воздушных линий электропередач
- Кабельная продукция
- Железобетонные изделия
- Оборудование для ВЛ
- Трубы полиэтиленовые, электротехнические двустенные
- Трубы металлические и фасонные изделия
- Сварочные материалы
- Металлопрокат
- Рудные и нерудные материалы
- Лакокрасочные материалы
- Кровельные и фасадные материалы
- Маслянные смазочно-охлаждающие жидкости
- Сети связи
- Отопление, вентиляция и кондиционирование, электроосвещение
- Прочие строительные материалы
- Детское игровое оборудование
- Материалы ВСП ЖД
- Эксплуатационная документация
- Электротехническое оборудование для ВЛ, ОРУ, ЗРУ, ОПУ, КТПН
- Охранно-пожарная сигнализация, электроосвещение, отопление, вентиляция и кондиционирование
- Сети связи
- Технологические карты ТК
- Сети связи (ВОЛС)
- Электрические сети (ЛЭП)
- Отделочные работы
- Окна
- Сварочные работы
- Свайные работы
- Восстановление и ремонт
- Автодороги и мосты
- Геодезические работы
- ТТК в AutoCAD
- Проекты производства работ ППР
Файлы cookie помогают нам улучшать качество предлагаемых интернет-пользователям услуг. Оставаясь на сайте, вы соглашаетесь на использование нами файлов cookie.
Методика проведения испытаний и определения мест повреждения кабельных линий с изоляцией из сшитого полиэтилена на напряжение 10–20 кВ

1. Введение.
1.1. Настоящая методика предназначена для персонала МКС и сторонних организаций, проводящих высоковольтные испытания и работы по ОМП на кабельных линиях из сшитого полиэтилена, находящихся на балансе и (или) в эксплуатации МКС или передаваемых МКС в эксплуатацию.
1.2. Методика определяет порядок организации, требования к оборудованию и технологию проведения работ по ОМП и в/в испытаниям на КЛ 10 — 20 кВ, выполненных из одножильных кабелей с изоляцией из сшитого полиэтилена.
1.3. Работы по ОМП и высоковольтным испытаниям на кабельных линиях из сшитого полиэтилена должны производиться с соблюдением требований действующих межотраслевых правил охраны труда.
2. Общие указания.
2.1. Ниже излагаемые положения методики распространяются на работы, проводимые с использованием передвижных и переносных испытательных установок и измерительных лабораторий.
2.2. Испытательное оборудование должно позволять проводить испытания:
• повышенным переменным напряжением до 36 кВ частотой 0,01-1 Гц;
• повышенным выпрямленным напряжением до 10 кВ.
2.3. Оборудование для проведения работ по ОМП КЛ должно включать:
• установки высоковольтной акустики 1-20 кВ;
• генератор постоянного тока до 500 мА мощностью 1-2 кВА;
• комплект приборов для определения в пучке одножильного кабеля.
2.4. При проведении высоковольтных испытаний и ОМП КЛ персонал должен руководствоваться:
• Инструкцией VII-Б-1 по испытаниям кабельных линий, оборудования распределительных устройств, защитных средств и определению мест повреждений на кабельных линиях.
• Инструкцией по эксплуатации передвижной испытательной лаборатории.
2.5. Запрещается для производства работ по ОМП КЛ с изоляцией из сшитого полиэтилена использование лабораторий, оборудованных установками автоматического прожига.
3. Испытания изоляции жил кабелей 10 -20 кВ с изоляцией из сшитого полиэтилена.
3.1. Высоковольтные испытания жил кабелей 10 -20 кВ с изоляцией из сшитого полиэтилена осуществляются:
• перед включением КЛ в эксплуатацию;
• после ремонтов поврежденной изоляции КЛ, кроме ремонтов оболочек;
• после перекладки и ремонта концевых заделок.
3.2. Плановые (межремонтные) испытания основной изоляции из сшитого полиэтилена на КЛ 10 -20 кВ не проводятся.
3.3. Для проведения испытаний используются установки, генерирующие переменное напряжение частотой 0,01-1 Гц. Мощность испытательной установки для испытания КЛ длиной до 10 км должна составлять не менее 2 кВА.
3.4. Порядок работы.
3.4.1. Подготовку рабочего места для производства испытания следует проводить в соответствии с Инструкцией VII-Б-1 и Инструкцией VHI-Б-5. Испытания изоляции жил любой из сболченных КЛ проводить только при полностью обесточенной ячейке. Все экраны кабеля должны быть заземлены.
3.4.2. Установить время испытаний. Время приложения испытательного напряжения к одной фазе кабеля при испытаниях перед вводом в эксплуатацию должно составлять 30 минут, после ремонтных испытаний 20 минут. Требуемое время испытания устанавливается в минутах с помощью таймера. Включить высокое напряжение и начать подъем испытательного напряжения.
3.4.3. Постепенно увеличивая испытательное напряжение, устанавливают необходимое значение. Контроль величины напряжения производить по киловольтметру испытательной установки.
В случае, если не удается в течении минуты поднять напряжение до устанавливаемого значения, дальнейшие испытания следует прекратить и отключить высокое напряжение.
Испытания также прекращаются в случае пробоя в кабеле. Пробой визуально определяется по посадке напряжения на киловольтметре, при этом высокое напряжение автоматически отключается.
3.4.4. В установившемся режиме киловольтметр показывает величину прикладываемого напряжения и его периодическое изменение полярности.
При этом одно из значений полярности может отличаться от другого на 5-10%.
3.4.5. Величина испытательного напряжения должна составлять:
• для КЛ 10 кВ — 18 кВ;
• для КЛ 20 кВ — 35 кВ.
3.4.6. По истечении требуемого времени испытания следует рукояткой регулятора напряжения плавно уменьшить испытательное напряжение до нуля, обеспечив тем самым предварительную разрядку емкости кабеля и конденсаторов установки и отключить высокое напряжение. После отключения высокого напряжения кабель автоматически разряжается через разрядное устройство. По истечении времени испытания одной фазы, установленного на таймере, высокое напряжение отключится автоматически.
3.4.7. При испытании коротких КЛ (до 1 км), можно, если позволяет мощность установки, осуществлять испытания трех жил одновременно.
4. Испытания защитных пластмассовых оболочек кабелей 10 -20 кВ с изоляцией из сшитого полиэтилена.
4.1. Высоковольтные испытания защитных пластмассовых оболочек кабелей 10 — 20 кВ с изоляцией из сшитого полиэтилена осуществляются:
• перед включением КЛ в эксплуатацию,
• после ремонтов основной изоляции КЛ,
• в случаях проведения раскопок в охранной зоне КЛ и связанного с этим возможного нарушения целостности оболочек,
• периодически — 1 раз в 5 лет.
4.2. Для проведения испытаний используются испытательные установки выпрямленного напряжения с максимальным выходным напряжением 10 кВ. Допускается использовать высоковольтные испытательные установки, предназначенные для испытания КЛ с бумаго-масляной изоляцией, при выполнении следующих условий:
• контроль выходного напряжения должен осуществляться по дисплею с цифровой индикацией или шкале киловольтметра, где 10 кВ составляют не менее четверти шкалы.
• наличие токовой отсечки в цепи включения высокого напряжения при превышении выходного тока более 2 мА.
4.3. Порядок работы.
4.3.1. Подготовку рабочего места для производства испытаний оболочек следует проводить в соответствии с Инструкцией VII-Б-1 и Инструкцией VII-Б-5. Иcпытания оболочки любой из сболченных КЛ проводить только при полностью обесточенной ячейке.
4.3.2. Экраны каждой из жил кабельной линии отсоединяются от контура заземления с двух сторон линии. Экраны кабельной линии 10 кВ на обеих концах электрически объединяются и на них накладывается переносное спецзаземление.
Экраны кабельной линии 20 кВ разводятся в разные стороны, во избежание взаимного электрического контакта между собой и контуром заземления.
4.3.3. Подключение испытательной установки к КЛ осуществляется путем наложения высоковольтного провода (в/в кабеля) на экран одножильного кабеля (экраны кабелей для КЛ 10 кВ).
Рабочее заземление установки подключается к контуру заземления в ячейке РУ или, при работах из котлована, к заземлению созданному из металлических кольев в соответствии с положениями Инструкции VII-Б-1.
После снятия спецзаземления с испытываемых экранов, (с одного для КЛ 20 кВ), включить в сеть испытательную установку.
4.3.4. Включить высокое напряжение и начать подъем испытательного напряжения.
4.3.5. Защитные оболочки каждой фазы должны выдерживать испытание постоянным выпрямленным напряжением отрицательной полярности величиной 10 кВ в течении 5 минут. Подъем напряжения следует осуществлять со скоростью не более 0,5 кВ в секунду.
4.3.6. Контролируя значения испытательного напряжения по киловольтметру, плавно повышать испытательное напряжение до 10 кВ, при этом же контролировать ток утечки. Если ток утечки будет превышать значение 200 мкА, испытания следует прекратить. Оболочка не выдержала испытания.
4.3.7. Если оболочка выдержала испытание, требуется снять остаточный заряд, заземлить экраны спецзаземлением и затем приболтить экраны на обоих концах линии.
5. Определение мест повреждения изоляции жил кабелей 10 -20 кВ с изоляцией из сшитого полиэтилена.
5.1. Повреждения КЛ из сшитого полиэтилена подразделяются на следующие виды:
• однофазное замыкание жилы на оболочку кабеля,
• обрыв одной, двух или трех фаз (с замыканием или без замыкания фаз на оболочку КЛ).
5.2. Работы по определению мест повреждения изоляции жил на КЛ из сшитого полиэтилена подразделяются на два этапа:
• определение зоны предполагаемого места повреждения,
• определение места повреждения на трассе КЛ.
5.3. После автоматического отключения КЛ необходимо обойти трассу кабельной линии на предмет отсутствия механических повреждений или проводимых раскопок.
5.4. Перед определением места повреждения на КЛ необходимо провести испытание изоляции всех трех жил кабеля относительно оболочки и выявить поврежденную жилу.
5.5. Испытание следует проводить с помощью высоковольтной испытательной установки выпрямленного напряжения. Испытываются все три жилы КЛ напряжением не более 25 кВ.
5.6. После выявления поврежденной жилы, для определения расстояния до места повреждения необходимо с помощью прожигающей установки, с учетом требований п.З. 5. и п. 3.17. Инструкции VII-Б-1, снизить сопротивление в месте пробоя до величины от 0 до 150 Ом, что позволит для определения расстояния использовать приборы Р-5-10, Рейс-105, Рейс-205.
5.7. При определении расстояния до места обрыва КЛ также используются приборы Р-5-10, Рейс-105 и Рейс-205.
5.8. Место повреждения жилы на трассе КЛ определяют акустическим методом.
С помощью импульсно — волнового генератора в поврежденную жилу КЛ посылается высоковольтная волна от заряженного конденсатора, которая в месте повреждения создает пробой.
В предполагаемой зоне повреждения мастер по измерениям с помощью акустического датчика и усилителя точно определяет место повреждения.
5.9. В случае, если сопротивление в месте повреждения будет иметь величину от 0 до 1 кОм. при определении повреждения может быть использован метод аномалии «нуля» (см. методические указания по определению места повреждения силовых кабелей напряжением до 10 кВ. РД 34.20.516.-90).
5.10. Для определения трасс и глубины залегания кабельных линий используется индукционный метод.
В этом случае генератор подключается по схеме жила не отболченный от контура заземления сетевого сооружения экран КЛ.
Трасса КЛ определяется по минимальному звучанию сигнала над кабелем в наушниках приемной аппаратуры при вертикально расположенном индукционном датчике.
6. Определение мест повреждения изоляции защитных пластмассовых оболочек кабелей 10-20 кВ с изоляцией из сшитого полиэтилена.
6.1. Для определения расстояния от места повреждения защитной оболочки до земли используют петлевой метод, при котором генератор постоянного тока подает ток через экран на землю.
Для проведения измерений используются две жилы закороченные на конце линии между собой и экранами, отболченными с двух сторон КЛ. Рекомендуется для повышения достоверности, измерения проводить с двух концов отключенного участка линии.
6.1.1. Схема проведения измерений при определении расстояния до места повреждения оболочки показана на рис.1.

При измерениях по варианту 1 и варианту 2, определяемых положением переключателя П, устанавливается одинаковое по величине значение тока от генератора.
6.1.2. Измерения проводятся в следующей последовательности:
• Переключатель П установить в положение 1 и произвести измерение напряжения U1 с помощью милливольтметра.
• Переключатель П установить в положение 2 и произвести измерение напряжения U2 с помощью милливольтметра.

определяют расстояние до места повреждения, где:
Lx — расстояние до места повреждения оболочки КЛ,
Lп — полная длина жилы КЛ, измеряется приборами
Р — 5 — 10, Рейс — 105 или Рейс — 205,
U1 — падение напряжения на оболочке от начала КЛ до места повреждения (R),
U2 — падение напряжения на оболочке от места повреждения R до конца КЛ.
6.2. Определение мест повреждений КЛ из сшитого полиэтилена на трассе кабельной линии.
6.2.1 Для определения повреждения защитной пластмассовой оболочки КЛ используется метод «шаговых потенциалов». Оболочки КЛ отбалчиваются с двух сторон.
Генератор постоянного или импульсного напряжения подключается одним концом к оболочке КЛ другим концом к контуру заземления.
Ток от генератора протекает по цепи оболочка КЛ ближайшее место повреждения и возвращается к генератору по земле и другим подземным коммуникациям.
Мастер по измерениям перемещаясь в предполагаемой зоне повреждения вдоль трассы с помощью щупов, которые втыкаются в землю на расстоянии не менее одного метра друг от друга вдоль трассы, производит измерение разности потенциалов.
До места повреждения прибор, с помощью которого производится измерение разности потенциалов, будет показывать отклонение стрелки от среднего положения в одну сторону, а за местом повреждения в другую. В месте повреждения стрелка будет показывать нулевое положение.
6.3. После окончания работ экраны КЛ с двух сторон прибалчиваются на их штатное место.
Нашли ошибку? Выделите и нажмите Ctrl + Enter
Методика испытаний кабельных линий с изоляцией из сшитого полиэтилена

Доброго времени суток, уважаемые гости сайта «Помощь электрикам». В сегодняшней статье я бы хотел рассмотреть испытание кабельных линий с изоляцией из сшитого полиэтилена (СПЭ). Методика испытаний кабельных линий с изоляцией из сшитого полиэтилена имеет очень сильное различие с нами уже знакомой методикой по испытанию кабельных линий бумажной изоляцией.
Доброго времени суток, уважаемые гости сайта «Помощь электрикам». В сегодняшней статье я бы хотел рассмотреть испытание кабельных линий с изоляцией из сшитого полиэтилена (СПЭ). Методика испытаний кабельных линий с изоляцией из сшитого полиэтилена имеет очень сильное различие с нами уже знакомой методикой по испытанию кабельных линий бумажной изоляцией.
Если обратится к нормативным документам, например ПУЭ-7 или ПТЭЭП, то мы обнаружим, что в их отсутствуют нормы по испытанию этих кабельных линий, но идут рекомендации по обращению к нормам по испытанию заводов – изготовителей данных КЛ. Просмотрев всевозможные инструкции, паспорта, и т.д., был сделан вывод: Различные заводы изготовители предлагаю различные методики и нормы по испытанию, причем имея существенные различия и во времени испытания, и в величие испытуемого напряжения.
В последнее время стали активно внедрятся кабельные линии с изоляцией из сшитого полиэтилена. Они идут на смену уже устаревшим кабельным линиям с бумажной изоляцией . Во всех регионах активно идут реконструкции воздушных линий электропередач с последующим переводом в кабельное исполнение.
Кстати, выбрать и приобрести электротехническое оборудование (трансформаторы тока или напряжения), Вы можете перейдя по ссылке.
Это в первую очередь связано с тем, что ВЛ имеют неэстетический вид, занимают огромные территории, в отличии от КЛ.
Кабельная линия с изоляцией из сшитого полиэтилена имеет либо одну, либо много алюминиевых (медных) жил. Сечение данных жил обычно круглое с классом гибкости равным -2.
Имеется так же экран, состоящий из электропроводящей пероксидносшиваемой полиэтиленовой изоляции, накладываемой на каждые жилы КЛ методом экструзии. После наложения экрана происходит изолирование жил перодсидносшиваемым полиэтиленом. Далее повторяется метод накладывания экрана. И после всего этого на жилу накладывается специальный комбинированный экран, который имеет следующий состав: слой электропроводящей бумаги, повив медных проволок, имеющих спирально наложенные медные ленты. Жилы, которые получились при экранировании, наматываются вокруг специального, состоящего и поливинилхлорида жгута, имеющего пониженный класс пожаробезопасности. В заключительной стадии имеющиеся промежутки, которые образовались между жилами КЛ, заполняют поливинилхлоридным пластиком, с наложением специальной оболочки из поливинилхлоридного пластика. Данные пластики все имеют класс пониженной пожаробезопа сности.
Основные преимущества кабельных линий с изоляцией из сшитого полиэтилена по сравнения с бумажной изоляцией:
1. Более высокая надежность эксплуатации (т.е. нагрузочная способность кабельных линий их ССПЭ выше)
2. Низкая допустимая температура при прокладке
без предварительного подогрева
3. Высокая стойкость к повреждениям
4. Меньший вес, диаметр и радиус изгиба
5. Высокий ток термической устойчивости
при коротком замыкании
6. Монтаж и эксплуатация осуществляются без вреда для экологии (отсутствие свинца, масла, битума
Основной недостаток данных КЛ это:
1. Отсутствие методики испытания и серьезный уровень подготовки
2. Высокая стоимость данных КЛ
Рассмотрим существующие методики заводов изготовителей.
Но прежде чем это сделать, вспомним про испытание кабельных линий с бумажной изоляцией. Мы все знаем, что данный вид КЛ испытывается в процессе эксплуатации шестикратным выпрямленным напряжением в течении 5 минут, согласно нормативным документам.
Но данные нормативные документы были созданы достаточно давно. И в современных реалиях полное соблюдение прошлых инструкций просто невыполнимо. Кабельные линии со сроком эксплуатации порядка 20-30 лет просто не выдержат таких испытаний. Поэтому большинство электротехнических лабораторий применяют более щадящий режим испытания. 10-ти киловольтный кабель испытывают 30 кВ постоянным напряжением, в течении 1 минуты. Данных испытаний будет достаточно, чтобы определить надежность кабельной линии.
Данный вид испытаний относился к Кабельным линиям СС бумажно-пропитанной изоляцией. Кабельные линии с изоляцией из сшитого полиэтилена, испытывать постоянным напряжением категорически НЕЛЬЗЯ. Разберем причины.
При испытании КЛ с изоляцией из сшитого полиэтилена повышенным постоянным напряжением происходит накопление объемных зарядов в месте повреждения изоляции.
Электрическое поле во время испытания будет выглядеть вот так:
После завершения испытания электрическое поле будет выглядеть вот так.
Полученные заряды могут стать причиной повреждения изоляции, либо к значительному снижению срока службы.
Делаем вывод, что кабельные линии с изоляцией из сшитого полиэтилена необходимо испытывать переменным напряжением. О тут возникает другой вопрос….
Во многих нормативных документах я читал, что в качестве испытательного напряжение для КЛ применяют переменное с низкой частотой тока 0,1 Гц и как говорят авторы это обусловлено тем, что « ИЗМЕНЕИЕ ПОЛЯРНОСТИ ЗАРЯДА КОМПЕНСИРУЕТ УЖЕ НАКОПЛЕНЫЕ ЗАРЯДЫ, ТЕМ САМЫМ РАЗРЯЖАЯ ИХ». Хочу выразить свое мнение, что действительно данный вид напряжения более эффективен, но мы забываем, что к сверхнизкой частоте нас подталкивает и испытательная установка. Применение переменного напряжения 50 Гц высокой величины в мобильных лабораториях практически невозможно. Данные лаборатории должны быть очень больших размеров. Изготовление таких лабораторий крайне невыгодно. С этой целью и используют переменное напряжение сверхнизкой частоты 0,1 Гц. И сейчас активно производятся мобильные передвижные высоковольтные лаборатории с оборудованием, позволяющим получить напряжение сверхнизкой частоты 0,1 Гц.
Например: ЭТЛ MTGAVAN на базе Мерседеса
1 Инструкция завода-изготовителя «Московский кабельные сети»/ОАО ”ЭЛЕКТРОКАБЕЛЬ ”КОЛЬЧУГИНСКИЙ ЗАВОД”
В инструкциях мы будем рассматривать не все напряжения. Возьмем самое распространенное 10 кВ.
Данная инструкция нам предлагает номинальное напряжение 10 кВ испытывать 18 кВ.
Переменное напряжение сверхнизкой частоты 0,1Гц.
Время испытания инструкция предлагает взять 30 минут.
При проведении испытаний необходимо испытательный провод присоединить к испытательному одной из жил испытательного кабеля. Две остальные жилы и экран кабеля необходимо заземлить с помощью закороток.
Далее проводить испытания с остальными жилами.
Кроме основой изоляции, испытывается еще и оболочка. Данный вид испытания необходим, если кабельная линия проложена в земле. При прохождении кабельной линии в лотках или по кабельной эстакаде, испытывать оболочку не нужно.
Испытывать оболочку необходимо выпрямленным напряжением 10 кВ в течении 1 минуты.
2 Инструкция завода-изготовителя «Энергопрофиль»
Данная инструкция нам предлагает номинальное напряжение 10 кВ испытывать 17,3 кВ.
Переменное напряжение сверхнизкой частоты 0,1Гц.
Время испытания инструкция предлагает взять 45 минут.
Как мы видим существенное различие по сравнению с предыдущей инструкцией во времени испытания. Но так же данная инструкция, почему то разрешает испытывать кабельные линии с изоляцией из сшитого полиэтилена постоянным напряжением четырехкратным в течение 15 минут.
Оболочка испытывается аналогично предыдущей инструкции.
3 Стандарты DIN — VDE 0276620 0276-1001 (Германия)
Данный стандарт нам предлагает номинальное напряжение 10 кВ испытывать 30 кВ.
Переменное напряжение сверхнизкой частоты 0,1Гц.
Время испытания инструкция предлагает взять 60 минут.
Здесь мы уже видим что различие по по сравнению с предыдущими инструкциями не только во времени испытания, но и в величине испытательного напряжения. Но и эта инструкция разрешает испытывать кабельные линии с изоляцией из сшитого полиэтилена постоянным напряжением четырехкратным в течение 15 минут.
Оболочка испытывается аналогично предыдущей инструкции.
В заключении хотел бы привести статистические данные.
Статистика СНЧ испытаний показывает, что из 100% случаев пробоя изоляции, 90% приходится на первые полчаса испытания
Остальные 10 % пробоев появляются по причине продолжительности испытаний.
В данной статье было рассказаны и проанализированы методики заводов изготовителей по испытанию КЛ.
При выборе методики испытания кабельных линий с изоляцией из сшито полиэтилена, каждая эксплуатирующая организация руководствуются различными принципами. Не все могут себе позволить иметь электротехническую лабораторию с напряжением СНЧ, поэтому они уже изначально будут применять постоянное напряжение, ухудшая при этом изоляцию.
В нашей лаборатории применяется мобильная установка МЕГА-2 на базе мерседес.
Кабельные линии с изоляцией из сшитого полиэтилена мы испытываем согласно нормам Стандарты DIN — VDE 0276620 0276-1001 (Германия)
Хотел бы пожелать всем специалистам, работающим в данной области, руководствоваться, прежде всего, здравым смыслом, а потом уже нормативными документами.
Испытания кабеля из сшитого полиэтилена
Проверка технических характеристик высоковольтной кабельной продукции с изоляцией из сшитого полиэтилена

Кабельные изделия, созданные по технологии СПЭ, с изоляцией из сшитого полиэтилена, является перспективной и популярной в профессиональной среде. Однако есть проблема, которая очень актуальна при испытаниях кабельных линий (КЛ). Она заключается в том, что крайне важно соблюдать условия процедуры. Придерживаться критериев нужно для того, чтобы не перестараться и не повредить изоляцию.
Специалисты нашей лаборатории ЭЛТ «Гефест» обладают достаточным опытом, чтобы исследовать кабель СПЭ до 35кВ с учетом обеспечения требуемого эксплуатационного ресурса.
Раз надёжная изоляция, зачем нужны испытания кабеля СПЭ?
Любые кабельные линии перед прокладкой и перед эксплуатацией должны подвергаться проверкам. Этот процесс обязательный и должен предотвратить любое даже незначительное и случайное повреждение целостности оболочки и изоляции.
Напряжение пробоя в самом слабом месте изоляции кабеля СПЭ 0,4, 6, 10, 35, 110 кВ должно быть выше, чем воздействующее напряжение. Именно поэтому высоковольтный метод испытания изоляции – это главный способ определения её состояния и надежности.
.jpg)
Какие типы диагностики СПЭ обязательные

Мы, в электротехнической лаборатории «Гефест» испытываем кабеля с изоляцией СПЭ согласно европейским требованиям, подвергаем изделие наиболее современными и эффективными методами: испытанием синусоидальным напряжением СНЧ, которое комбинируется с диагностикой ЧР (частичный разряд).
При проверке высоковольтного кабеля из сшитого полиэтилена проводим следующие процедуры:
- Определение целостности оболочки.
- Контроль прочностных характеристик с проведением перспективного и эффективного СНЧ-испытания на сверхнизкой частоте 0,1 Гц при переменном напряжении 3кВ. Форма напряжения – синусоида.
- Диагностику методом измерения параметров частичных разрядов (ЧР) на СНЧ.
Как и когда диагностируем оболочку кабеля из сшитого полиэтилена
Проверка целостности внешней защитной полимерной оболочки из сшитого полиэтилена выполняем после прокладки в траншее или по эстакаде. Испытываем напряжением 10 кВ в течение 1 мин.
Оболочка считается целой, если не произошел ее электрический пробой.
В процессе проверки целостности испытательное напряжение прикладывается между металлическим экраном кабеля и «землей». Поэтому для контроля кабельных линий, проложенных на воздухе по эстакадам, следим, чтобы защитная оболочка имела внешний электропроводящий слой, который заземляем на в процессе работы.

Подготовка кабельных изделий номинальным напряжением 0,4, 6, 10, 35, 110 кВ

Это очень важный этап в предиспытательный период. Наши специалисты уделяют ему большое внимание.
За счет подготовки к проверкам, мы выполняем нормы, которые обеспечат сохранность кабельной продукции при подаче повышенного напряжения.
При монтаже и прокладке КЛ, перед диагностикой, подготовим кабель, для этого следим за тем, чтобы
- Термоусаживаемое соединение было посажено полностью.
- Внешний полупроводящий слой был полностью и правильно удален.
- Внутри соединений не было грязи.
При наличии этих дефектов в муфте СПЭ применяем напряжение СНЧ с частотой 0,1Гц, В этом случае, кабельная арматура проходит проверку нормально, не будет развития существующих дефектов, если такие есть. Однако при комбинировании с диагностикой ЧР мы обнаружим даже незначительные нарушения. Эти недостатки фиксируем в протоколе, их необходимо вовремя устранить, иначе при эксплуатации дефекты приведут к выходу кабеля из строя.
Если во время проверки не наблюдалось толчков тока утечки и было отсутствие его нарастания после ставших стабильными испытательными показателями, то это говорит о том, что оболочка прошла испытания.
Периодичность испытаний кабеля из сшитого полиэтилена и когда их надо производить
Кабельные линии 6, 10, 20, 35 кВ из сшитого полиэтилена мы испытываем по общим требованиям к проверкам кабельной продукции и по нормам ПУЭ:
- перед началом эксплуатации КЛ;
- после окончания ремонтных работ основной (внешней) изоляции;
- во время периодического планового испытания не реже 1 раза в течение 5 лет.

Что содержит протокол
После выполнения процедуры проверки, результаты вносим в протокол. Выполняем необходимые вычисления и смотрим на асимметрию токов утечки по фазам, если она превышает 8-10%, то это является признаком дефекта кабельной линии (обычно это неудовлетворительная разделка муфт).
Резюмируя исследования мы подтверждаем, что результаты считаются удовлетворительными:
- если не возник пробой;
- не отмечено нарушение изоляции;
- не наблюдалось резких бросков тока в сторону увеличения;
- не было падения напряжения в сторону уменьшения;
- ток утечки в период приложения максимального напряжения не возрастал и не превышал допустимых значений;
- не наблюдалось скользящих разрядов;
- сопротивление изоляции осталось неизменным до и после испытания.
Фиксируем все измерения и указываем средства, используемые для проверки. В графе заключение указываем результат, даём рекомендацию по возможной эксплуатации кабеля.
Использование высококачественной кабельной продукции и кабельной арматуры играет решающую роль, когда речь идет о надежности электрических сетей. Для проверки качества мы используем многочисленные национальные и международные стандарты.
Опыт проведения многочисленных типовых испытаний демонстрирует, что процент отказов эксплуатируемых кабелей очень высок и составляет порядка 18%, а для арматуры до 50%. По многочисленным отзывам наших Заказчиков, мы знаем, что своей работой у нас получается снизить этот показатель и добиться безаварийной работы оборудования, электроустановок, системы электроснабжения.