Асинхронный двигатель в режиме генератора с самозапиткой
Электрики давно научились извлекать пользу из принципа обратимости электрических машин: когда попадает в руки вроде бы ненужный трехфазный движок, то его можно раскрутить от бытовой сети или вырабатывать бесплатную электрическую энергию.
Но в данном материале мы не собираемся «вешать лапшу» про свободную и бесплатную энергию или про «гениев», подключивших лампочку к батарейке. И так:
Асинхронные электродвигатели
В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.
Асинхронные электродвигатели – самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.
Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название — короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.
Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.
Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.
Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.
Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.
Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.
Схема генератора из асинхронного двигателя
Нажмите на изображение чтобы увеличить
В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:
- Обмотка возбуждения, которая находится на специальном якоре.
- Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.
Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:
- Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
- Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
- Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
- Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.
При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.
Устройство генератора
Нажмите на изображение чтобы увеличить
Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:
- Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
- Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
- Контактные кольца имеют надежный крепеж к валу ротора.
- В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
- Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
- Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.
Изготовление генератора из двигателя
Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.

Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:
- Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре.
- Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
- Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
- Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
- Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
- Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
- Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
- После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
- Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
- Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
- Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
- Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
- Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Также потребуется контроллер для зарядки, подходят фактически все современные модели.
После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.
Оценка уровня эффективности – выгодно ли это?
Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?
Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.
Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.
Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.
Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.
Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:
В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.
Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.
Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.
В заключение несколько общих советов.
1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.
2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.
3. Обратите внимание на тепловой режим генератора. Он «не любит» холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.
4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы — 2/3 общей мощности генератора.
5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме «холостого хода» должно на 4…6 % превышать промышленное значение 220/380 В.
Асинхронный двигатель в режиме генератора с самозапиткой
Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.
- Главная
- Каталог самоделки
- Дизайнерские идеи
- Видео самоделки
- Книги и журналы
- Форум
- Обратная связь
- Лучшие самоделки
- Самоделки для дачи
- Самодельные приспособления
- Автосамоделки, для гаража
- Электронные самоделки
- Самоделки для дома и быта
- Альтернативная энергетика
- Мебель своими руками
- Строительство и ремонт
- Самоделки для рыбалки
- Поделки и рукоделие
- Самоделки из материала
- Самоделки для компьютера
- Самодельные супергаджеты
- Другие самоделки
- Материалы партнеров

Работа асинхронного двигателя в режиме генератора
В статье рассказано о том, как построить трёхфазный(однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.
Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели–самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.
Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название-короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.
По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.
В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.
Автономные асинхронные генераторы — трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.
Рис.1 Стандартная схема включения асинхронного электродвигателя в качестве генератора.
Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.
В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:
Руководство как сделать генератор из асинхронного двигателя
Принцип обратимости существует в науке электротехнике. О чем это говорит? О том, что любой прибор, который занимается преобразованием энергии электрического типа в механическую, может совершать и обратный ход, т.е. получать из механической энергии электрический ток. Ознакомиться с дифавтоматом и для чего он нужен можно здесь.

Именно на этом самом принципе обратимости основана вся работа генератора электрического тока. При этом ток формируется в обмотке статора при вращении ротора.
Может ли работать как генератор?
В теоретической точки зрения, можно самостоятельно переделать асинхронный двигатель и использовать его в качестве генератора. Но для этого необходимо:
- Создать благоприятную атмосферу, в которой возникновение тока будет возможным.
- Понять физический принцип работы генератора и асинхронного двигателя.
Многие мастера и умельцы задаются вопросом относительно создания из асинхронного двигателя генератора электрического тока. Причем. даже если следовать всем советам, не каждый достигает желаемого результата. Потому как на питательных клеммах никогда не возникнет электрического тока, сколько бы не вращали двигательный вал. Читайте что такое резистор и как он работает.
Принцип работы в режиме генератора
В машине электрического типа, которая первоначально была создана для того чтобы использоваться в качестве генератора, имеется несколько активных обмоток:
- Обмотка, находящаяся в возбужденном состоянии. Она размещена непосредственно на корпусе якоря.
- Статорная обмотка – в ней происходит возникновение тока.
Если говорить о принципе работы, то в его основе лежит электромагнитная индукция: в металлической обмотке порождается магнитное поле, но только после того, как на эту катушку подействует электрический ток.
Возникновение магнитного поля непосредственно в металлической обмотке якоря происходит из-за напряжения, которое по обыкновению подается с источника питания (в данном случае с аккумулятора). Непосредственное вращение может обеспечить любой физический объект. Это может быть даже человеческая мускульная сила.
Следует отметить, что любая конструкция электрического двигателя с ротором короткозамкнутого типа не может предусмотреть вероятность подачи электрического напряжения непосредственно на якорную обмотку. Причем это суждение верно относительно 90% всех электрических машин. Читайте как не запутаться в цветной маркировке резисторов.
Если рассматривать асинхронный двигатель в режиме генератора КПД, то необходимо отметить, что коэффициент полезного действия будет невероятно низким. По этой причине нужно позаботиться о максимальной подаче электрической мощности на механическое устройство, только так получится мало-мальски «порядочный результат».
Виды и особенности использования

Генератор из асинхронного двигателя с самозапиткой на фото
- С самозапиткой – в данном случае генератор электрического тока может работать огромное количество времени, потому как устройство сможет самостоятельно проводит запитку электричеством;
- Из трехфазного асинхронного двигателя – в этом случае необходимо учитывать три выводящие фазы. Но как показывает практика, это совершенно бессмысленно. Для нормальной работы будет достаточно всего одной фазы;
- Из электродвигателя от стиральной машины – при создании такого электрического генератора на выходе будет получено среднее объемы мощности.

На снимке генератор из электродвигателя от стиральной машины
Как сделать генератор?
Широко распространены два варианта переделывания двигателя асинхронного типа в генератор электрического тока:
-
Вариант №1 Стандартный вариант переделки асинхронного двигателя в электрический генератор. В данном случае потребуется поработать на создании магнитного поля. Для этого можно будет установить магнит постоянного типа непосредственно на корпусе ротора или выполнить обмотку якоря.

Электрический генератор на рисунке

Трехфазный двигатель на фото

На фото трехфазный генератор
При самостоятельном создании электрического генератора из асинхронного двигателя следует воспользоваться специальной типовой схемой. Без нее формирование генератора будет затруднено.

Схема генератора на базе асинхронного двигателя
Видео, как сделать генератор?
Существует большое количество вариантов создания генератора электрического тока. Народные умельцы могут сделать его даже из старой стиральной машины.
В том случае, если необходимо получить высокоэффективное устройство, то следует использовать такие устройства, которые могут генерировать большие объемы электрического тока.
В качестве наглядного примера можно воспользоваться обучающим видеоматериалом, который представлен на Ютубе. В данном случае речь идет о генераторе Камаза и асинхронном двигателе.
Получается, что создать генератор электрического тока собственными руками не так уж и сложно. Необходимо только определиться с типом привода. Не будет никаких проблем, если для «переделки» брать бензиновый двигатель стандартного типа. Ним не будет проблем. Намного больше трудностей у мастера возникнет, если он в качестве привода использует мельницу ветряную. Главная причина – это количество оборотов устройства, также, как и напряжения выходного типа, будут зависеть от скорости и силы ветряного потока. Читайте как работает трансформатор для галогенных ламп и какой выбрать на этой странице.
Видео
Смотрите на видео как сделать генератор из асинхронного двигателя:
Следовательно, генераторы этого вида необходимо рассчитать так, чтобы при минимуме оборотов происходила выработка номинального напряжения. Соответственно на выходе нужно иметь не меньше чем 12 В.
Самодельный асинхронный генератор
Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.
Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:
- более высокую степень надёжности;
- длительный срок эксплуатации;
- экономичность;
- минимальные затраты на обслуживание.
Эти и другие свойства асинхронных генераторов заложены в их конструкции.
Устройство и принцип работы
Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.
Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.
Рис. 1. Ротор и статор асинхронного генератора
Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.
Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).
Рис. 2. Асинхронный генератор в сборе
Принцип действия
По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.
В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.
При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.
Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.
На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.
Рис. 3. Схема сварочного асинхронного генератора
Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.
Рисунок 4. Схема устройства с индуктивностями
Отличие от синхронного генератора
Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).
Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.
Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:
- ИБП;
- регулируемые зарядные устройства;
- современные телевизионные приёмники.
Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.
Классификация
Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.
На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.
Рис. 5. Типы асинхронных генераторов
Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.
Область применения
Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.
Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.
Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.
Сфера применения довольно обширная:
- транспортная промышленность;
- сельское хозяйство;
- бытовая сфера;
- медицинские учреждения;
Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.
Асинхронный генератор своими руками
Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):
Рис. 6. Заготовка с наклеенными магнитами
Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.
Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.
Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.
Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.
Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .
При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.
Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.youtube.com/watch?v=ZQO5S9F72CQ
Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs
Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8
Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE
Часть 5
https://www.youtube.com/watch?v=z2YSqVh1vM8
Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA
Для упрощения подбора конденсаторов воспользуйтесь таблицей:
| Мощность альтернатора (кВт-А) | Ёмкость конденсатора (мкФ) на холостом ходу | Ёмкость конденсатора (мкФ) при средней нагрузке | Ёмкость конденсатора (мкФ) при полной нагрузке |
| 2 | 28 | 36 | 60 |
| 3,5 | 45 | 56 | 100 |
| 5 | 60 | 75 | 138 |
На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.
Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.
Рис. 7. Схема подключения конденсаторов
Советы по эксплуатации
Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.
Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.
При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.
Асинхронный двигатель в режиме генератора
В случае необходимости, в качестве генератора переменного тока может быть применен трехфазный асинхронный электродвигатель с короткозамкнутым ротором типа «беличья клетка».
Это решение удобно в силу широкой доступности асинхронных двигателей, а также благодаря отсутствию в подобных двигателях коллекторно-щеточного узла, что делает такой генератор надежным и долговечным. Если есть удобный способ приводить его ротор во вращение, то для генерации электроэнергии достаточно будет подключить к обмоткам статора три одинаковых конденсатора. Практика показывает, что такие генераторы могут работать годами без необходимости обслуживания.


Поскольку на роторе присутствует остаточная намагниченность, то при его вращении в статорных обмотках возникнет ЭДС индукции, а поскольку к обмоткам подключены конденсаторы, будет иметь место соответствующий емкостный ток, который станет намагничивать ротор. При дальнейшем вращении ротора произойдет самовозбуждение, благодаря чему в обмотках статора установится трехфазный синусоидальный ток.

В генераторном режиме частота вращения ротора должна соответствовать синхронной частоте двигателя, которая выше его рабочей (асинхронной) частоты. Например: у двигателя АИР112МВ8 обмотка статора имеет 4 пары магнитных полюсов, значит, его номинальная синхронная частота составляет 750 об/мин, но при работе под нагрузкой, ротор этого двигателя вращается с частотой 730 об/мин, поскольку это асинхронный двигатель. Значит, в генераторном режиме нужно вращать его ротор с частотой 750 об/мин. Соответственно, для двигателей с двумя парами магнитных полюсов номинальная синхронная частота составляет 1500 об/мин, а с одной парой полюсов – 3000 об/мин.
Конденсаторы подбираются в соответствии с мощностью применяемого асинхронного двигателя и характером нагрузки. Реактивную мощность, которую обеспечивают конденсаторы в таком режиме работы, в зависимости от их емкостей, можно вычислить по формуле:

Например, есть асинхронный двигатель, рассчитанный на номинальную мощность в 3кВт при работе от трехфазной сети с напряжением 380 Вольт и частотой 50 Гц. Значит, конденсаторы при полной нагрузке должны обеспечить всю эту мощность. Поскольку ток трехфазный, то речь здесь идет о емкости каждого конденсатора. Емкость можно найти по формуле:

Следовательно, для данного трехфазного асинхронного двигателя на 3кВт емкость каждого из трех конденсаторов при полной активной нагрузке составит:

Отлично подойдут для этой цели пусковые конденсаторы серий К78-17, К78-36 и им подобные на напряжение 400 Вольт и выше, лучше на 600 Вольт, или металлобумажные конденсаторы аналогичных номиналов.

Говоря о режимах работы генератора из асинхронного двигателя, важно отметить, что на холостом ходу подключенные конденсаторы будут создавать реактивный ток, который станет просто греть статорные обмотки, поэтому имеет смысл сделать конденсаторные блоки составными, и подключать емкости в соответствии с требованиями конкретной нагрузки. Ток холостого хода, при таком решении, будет значительно снижен, что позволит разгрузить систему в целом. Нагрузки же реактивного характера – наоборот потребуют подключения дополнительных конденсаторов, превышающих расчетный номинал из-за характерного для реактивных нагрузок коэффициента мощности.

Допускается соединение статорных обмоток как в звезду, для получения 380 Вольт, так и в треугольник, для получения 220 Вольт. Если нет необходимости в трехфазном токе, можно использовать лишь одну фазу, подключив конденсаторы только к одной из статорных обмоток.
Можно работать и с двумя обмотками. Между тем нужно помнить, что мощность, отдаваемая каждой из обмоток в нагрузку, не должна превышать трети общей мощности генератора. В зависимости от нужд, можно подключить трехфазный выпрямитель, или использовать непосредственно переменный ток. Для удобства контроля, полезно организовать индикаторный стенд с измерительными приборами – вольтметрами, амперметрами, и частотомером. Для переключения конденсаторов отлично подойдут автоматы (автоматические выключатели).

Особое внимание следует уделить технике безопасности, учесть критические значения токов, и соответствующим образом рассчитать сечения всех проводов. Надежная изоляция – также немаловажный фактор безопасности.
Генераторы
Все про генераторы
Бтг из асинхронного двигателя с самозапиткой своими руками
В стремлении получить автономные источники электроэнергии специалисты нашли способ как своими руками переделать, трехфазный асинхронный электродвигатель переменного тока в генератор. Такой метод имеет ряд преимуществ и отдельные недостатки.

Внешний вид асинхронного электродвигателя
В разрезе показаны основные элементы:
- чугунный корпус с радиаторными рёбрами для эффективного охлаждения;
- корпус короткозамкнутого ротора с линиями сдвига магнитного поля относительно его оси;
- коммутационно контактная группа в коробке (борно), для коммутации обмоток статора в схемы звезда или треугольник и подключения проводов электропитания;
- плотные жгуты медных проводов обмотки статора;
- стальной вал ротора с канавкой для фиксации шкива клиновидной шпонкой.
Детальная разборка асинхронного электродвигателя с указанием всех деталей показана на рисунке ниже.

Детальная разборка асинхронного двигателя
Достоинства генераторов, переделанных из асинхронных двигателей:
- простота сборки схемы, возможность не разбирать электродвигатель, не перематывать обмотки;
- возможность вращения генератора электротока ветряной или гидротурбиной;
- генератор из асинхронного двигателя широко используется в системах мотор-генератор для преобразования однофазной сети 220В переменного тока в трёхфазную сеть с напряжением 380В.
- возможность использования генератора, в полевых условиях раскручивая его от двигателей внутреннего сгорания.
Как недостаток можно отметить сложность расчёта ёмкости конденсаторов, подключаемых к обмоткам, фактически это делается экспериментальным путём.
Поэтому трудно добиться максимальной мощности такого генератора, бывают сложности с электропитанием электроустановок, которые имеют большое значение пускового тока, на циркулярных электропилах с трёхфазными двигателями переменного тока, бетономешалках и других электроустановках.
Принцип работы генератора
В основу работы такого генератора заложен принцип обратимости: «любая электроустановка преобразующая электрическую энергию в механическую, может сделать обратный процесс». Используется принцип работы генераторов, вращение ротора вызывает ЭДС и появление электрического тока в обмотках статора.
Исходя из этой теории, очевидно, что асинхронный электродвигатель можно переделать в электрогенератор. Чтобы осознано провести реконструкцию необходимо понять, как происходит процесс генерации и что для этого требуется. Все двигатели, которые приводит в движение сила переменного тока, считаются асинхронными. Поле статора движется с небольшим опережением относительно магнитного поля ротора, подтягивая его за собой в сторону вращения.
Чтобы получить обратный процесс, генерацию, поле ротора должно опережать движение магнитного поля статора, в идеальном случае вращаться в противоположном направлении. Добиваются этого включением в сеть питания, конденсатора большой ёмкости, для увеличения ёмкости используют группы конденсаторов. Конденсаторная установка заряжается, накапливая магнитную энергию (элемент реактивной составляющей переменного тока). Заряд конденсатора по фазе противоположный источнику тока электродвигателя, поэтому вращение ротора начинает замедляться, обмотка статора генерирует ток.
Этот принцип работы используется практически в электровозах, трамваях при необходимости плавного торможения. По такому же принципу некоторые «Кулибины», замедляют вращение диска электросчётчиков, пытаясь сократить расходы на электроэнергию.
Преобразование
Как практически своими руками преобразовать асинхронный электродвигатель в генератор?
Для подключения конденсаторов надо открутить верхнюю крышку борно (коробка), где расположена контактная группа, коммутирующая контакты обмоток статора и подключены провода питания асинхронного двигателя.

Открытое борно с контактной группой
Обмотки статора могут быть соединены в схему «Звезда» или «Треугольник».

Схемы включения «Звезда» и «Треугольник»
На шильдике или в паспорте на изделие показаны возможные схемы подключения и параметры двигателя при различных подключениях. Указывается:
- максимальные токи;
- напряжение питания;
- потребляемая мощность;
- количество оборотов в минуту;
- КПД и другие параметры.

Параметры двигателя, которые указаны на шильдике
В трёхфазный генератор из асинхронного электродвигателя, который делают своими руками, конденсаторы подключаются по аналогичной схеме «Треугольником» или «Звездой».
Вариант включения со «Звездой» обеспечивает пусковой процесс генерации тока на более низких оборотах, чем при соединении схемы в «Треугольник». При этом напряжение на выходе генератора будет немного ниже. Подключение по схеме «Треугольника» предоставляет незначительное увеличение выходного напряжения, но требует более высоких оборотов при запуске генератора. В однофазном асинхронном электродвигателе подключается один фазосдвигающий конденсатор.

Схема подключения конденсаторов на генераторе в «Треугольник»
Используются конденсаторы модели КБГ-МН, или другие марки не менее 400 В бесполярные, двухполюсные электролитические модели в этом случае не подходят.

Как выглядит бесполюсный конденсатор марки КБГ-МН
Так как в бытовых условиях рассчитать необходимую ёмкость конденсаторов для используемого двигателя практически невозможно, экспериментальным путём была составлена таблица.
Расчёт ёмкости конденсаторов для используемого двигателя
| Номинальная выходная мощность генератора, в кВт | Предположительная ёмкость в, мкФ |
|---|---|
| 2 | 60 |
| 3,5 | 100 |
| 5 | 138 |
| 7 | 182 |
| 10 | 245 |
| 15 | 342 |
В синхронных генераторах возбуждение процесса генерации происходит на обмотках якоря от источника тока. 90% асинхронных двигателей имеют короткозамкнутые роторы, без обмотки, возбуждение создаётся остаточным в роторе статическим зарядом. Его достаточно чтобы на первоначальном этапе вращения создать ЭДС, которое наводит ток, и подзаряжает конденсаторы, через обмотки статора. Дальнейшая подзарядка уже поступает от генерируемого тока, процесс генерации будет непрерывным, пока вращается ротор.
Автомат подключения нагрузки к генератору, розетки и конденсаторы рекомендуется установить в отдельный закрытый щит. Соединительные провода от борно генератора до щита проложить в отдельном изолированном кабеле.
Даже при неработающем генераторе необходимо избегать прикосновения к клемам конденсаторов контактов розеток. Накопленный конденсатором заряд остаётся длительное время и может ударить током. Заземляйте корпуса всех агрегатов, мотора, генератора, щита управления.
Монтаж системы мотор-генератор
При монтаже генератора с мотором своими руками надо учитывать, что указанное количество номинальных оборотов используемого асинхронного электродвигателя на холостом ходу больше.

Схема мотор-генератора на ременной передаче
На двигателе в 900 об/м при холостом ходе будет 1230 об/м, чтобы получить на выходе генератора, переделанного из этого двигателя достаточную мощность, надо иметь количество оборотов на 10% больше холостого хода:
1230 + 10% =1353 об/м.
Ременная передача рассчитывается по формуле:
Vг – необходимая скорость вращения генератора 1353 об/м;
Vм – скорость вращения мотора 1200 об/м;
Dм – диаметр шкива на моторе 15 см;
Dг – диаметр шкива на генераторе.
Имея мотор на 1200 об/м где шкив Ø 15 см, остаётся рассчитать только Dг – диаметр шкива на генераторе.
Dг = Vм x Dм/ Vг = 1200об/м х 15см/1353об/м = 13,3 см.
Генератор на ниодимовых магнитах
Как сделать генератор из асинхронного электродвигателя?
Этот самодельный генератор исключает применение конденсаторных установок. Источник магнитного поля, которое наводит ЭДС и создаёт ток в обмотке статора, построен на постоянных ниодимовых магнитах. Для того чтобы это сделать своими руками необходимо последовательно выполнить следующие действия:
- Снять переднюю и заднюю крышки асинхронного электродвигателя.
- Извлечь ротор из статора.

Как выглядит ротор асинхронного двигателя
- Ротор протачивается, снимается верхний слой на 2 мм больше толщины магнитов. В бытовых условиях сделать расточку ротора своими руками не всегда представляется возможным, при отсутствии токарного оборудования и навыков. Нужно обратиться к специалистам в токарные мастерские.
- На листе обычной бумаги готовится шаблон для размещения круглых магнитов, Ø 10-20мм, толщиной до 10 мм, с силой притяжения 5-9 кг, на кв/см, размер зависит от величины ротора. Шаблон наклеивается на поверхность ротора, магниты размещаются полосами под углом 15 – 20 градусов относительно оси ротора, по 8 штук в полосе. На рисунке ниже видно, что на некоторых роторах отмечены тёмно-светлые полосы смещения линий магнитного поля относительно его оси.

Установка магнитов на ротор
- Ротор на магнитах рассчитывается так, чтобы получилось четыре группы полос, в группе по 5 полосок, расстояние между группами 2Ø магнита. Промежутки в группе 0.5-1Ø магнита, такое расположение снижает силу залипания ротора к статору, он должен проворачиваться усилиями двух пальцев;
- Ротор на магнитах, сделанный по рассчитанному шаблону, заливается эпоксидной смолой. После того как она немного подсохнет цилиндрическая часть ротора покрывается слоем стекловолокна и опять пропитывается эпоксидной смолой. Это исключит вылет магнитов при вращении ротора. Верхний слой на магнитах не должен превышать первоначального диаметра ротора, который был до проточки. В противном случае ротор не встанет на своё место или при вращении будет тереться об обмотку статора.
- После просушки, ротор можно поставить на место и закрыть крышки;
- Испытывать, электрогенератор необходимо – проворачивать ротор электродрелью, измеряя напряжение на выходе. Количество оборотов при достижении нужного напряжения измеряется тахометром.
- Зная необходимое количество оборотов генератора, ременная передача рассчитывается по методике описанной выше.
Интересный вариант применения, когда электрогенератор на основе асинхронного электродвигателя, используется в схеме электрический мотор-генератор с самоподпиткой. Когда часть мощности вырабатываемой генератором поступает на электродвигатель, который его раскручивает. Остальная энергия расходуется на полезную нагрузку. Осуществив принцип самоподпитки практически можно на долгое время обеспечить дом автономным электропитанием.
Видео. Г енератор из асинхронного двигателя.
Для широкого круга потребителей электроэнергии покупать мощные дизельные электростанции как TEKSAN TJ 303 DW5C с мощностью на выходе 303 кВА или 242 кВт не имеет смысла. Маломощные бензиновые генераторы дорогие, оптимальный вариант сделать своими руками ветровые генераторы или устройство мотор-генератор с самопдпиткой.
Используя эту информацию можно собрать генератор своими руками, на постоянных магнитах или конденсаторах. Такое оборудование очень полезно на загородных домах, в полевых условиях, как аварийный источник питания, когда отсутствует напряжение в промышленных сетях. Полноценный дом с кондиционерами, электрическими плитами и нагревательными бойлерами, мощный мотор циркулярной пилы они не потянут. Временно обеспечить электроэнергией бытовые приборы первой необходимости могут, освещение, холодильник, телевизор и другие, которые не требуют больших мощностей.