Халявное електричество Н-н-н-а-а-д-д-оооо ?

Всем привет, сам я в електричестве не разбираюсь, хотя знаю, что в розетку лучше ничего не совать, но в наш век безумного изобретательства и альтернативного творчества, уже ничему не удивляюсь (ну быть может вечному двигателю… да и то чуть чуть :))
Сегодня случайно нашёл источник дармового и бесплатного электричества на дачу (ну так заявляет автор и продавец изобретения), насколько это реально я не знаю, будем считать «Мопед не мой, я только разместил»
Изобретение относится к области альтернативной энергетики и может быть использовано при построении мобильных и стационарных источников механической энергии. Устройство является электромагнитно-механической реализацией двигателя ДВС. Время работы АИП не ограничено. Для автономной работы АИП не требуется топливо, ветер или солнце. Общий принцип работы АИП это ротовертера + умножитель энергии + инвертор.
Комплектация АИП в меню: tenkot.nethouse.ru/page/956949
Срок службы АИП(автономного источника питания) 15 лет. Гарантия 5(пять) лет. АИП способен обеспечить электроэнергией работы все бытовых приборов, электрокотлов(кроме электродных), асинхронных двигателей, сварочных аппаратов и электроинструментов. Выход на всех моделях на 220V и 380V.
Технические характеристики:
Выход на всех моделях на 220V и 380V
Применение: Для дачи, Для частного дома, Для промышленных нужд
Тип напряжения: Однофазный/Трехфазный
Принцип стабилизации: Сервоприводный
Мощность (кВА): 50
Выходная частота: 50 Гц
Максимальный выходной ток 220V: -280 А (220 вольт)
Максимальный выходной ток 380V: — 130 А (380 вольт)
Запрещена нагрузка одновременно двух выходов на 380 и 220 вольт!
Форма выходного сигнала: чистая синусоида
Шум: 40 ДБ
Режим работы: Непрерывный
Способ установки: Напольный
Тип охлаждения: Воздушное (конвекционное и принудительное)
Дисплей: Цифровой
Задержка включения: 6 секунд, 12 секунд
Номинальное выходное напряжение (В): 220/380
Отклонение выходных напряжений: ±3%
Время реакции на изменение напряжения (мс): 20
Защита от перегрева трансформатора, откл. При: ≥ 80-90 °С
Защита от перегрузки по току: Автоматический выключатель
Степень защиты от внешних воздействий по ГОСТ 14254-96: IP20
Температура эксплуатации (°С): -30…+40
Температура хранения (°С): -45…+45
Относительная влажность (%): 95
Габаритные размеры (мм): 435 х 395 х 770
Вес (кг): 60
удовольствие называется АИП 50/220-380, стоимость 205 000 руб. (это самый дорогой, есть и дешевле)
вот видео работы
ну и фото чудо агрегата



Получается, если внедрить такую хреновину в автомобиль, то потребуется только стартовый аккумулятор (ну или суперконденсатор) который будет запускать установку и далее катайся в своё удовольствие ?
вот график рекомендуемого ТО
Техническое обслуживание.
Все работы проводить с неработающим генератором!
№1 проводиться после 2500 кВт часов работы:
— протяжка креплений двигателя и генератора
— протяжка клемовых соединений
№2 проводиться через 5000 кВт час работы генератор
— протяжка креплений двигателя и генератора
— протяжка клемовых соединений
№3 проводиться через 10000 кВт час работы генератор
— протяжка креплений двигателя и генератора
— протяжка клемовых соединений
— замена подшипников на электродвигателе и генераторе(подшипники в комплекте)
ни тебе замены масла, ни фильтров… просто мечта…
Короче интересно мнение, насколько эта хреновина вообще может работать, да и вообще :)) вдруг у нас опять изобрели что то суперское, но скрывают от народа из-за «теории всеобщего заговора» и надо срочно бежать покупать (пусть стоит, вдруг пригодиться 🙂 в гараже )
ну и про заговор :))
Инвертор реактивной мощности
На этой странице будет представлено описание и предложена принципиальная схема несложного устройства для экономии электроэнергии, так называемый инвертор реактивной мощности. Устройство полезно при использовании, например, таких часто употребимых бытовых электроприборов, как бойлер, электродуховка, электрочайник и других, в том числе не нагревательных электронных устройств, телевизор, компьютер и др. Устройство может использоваться с любыми счетчиками, в том числе и сэлектронными, даже имеющими в качестве датчика шунт или воздушный трансформатор. Устройство просто вставляется в розетку 220 В 50 Гц и от него питается нагрузка, при этом вся электропроводка остается нетронутой. Заземление не требуется. Счетчик при этом будет учитывать примерно четверть потребленной электроэнергии.
Увеличить (Скачать) |
| Инвертор реактивной мощности, принципиальная схема для ознакомительных целей |
Получить рабочую схему данного устройства с указанием номиналов элементов и подробной инструкцией по сборке и настройке можно здесь.
Немного теории . При питании активной нагрузки фазы напряжения и тока совпадают. Функция мощности, представляющая собой произведение мгновенных значений напряжения и тока, имеет вид синусоиды, расположенной только в области положительных значений. Счетчик электрической энергии вычисляет интеграл от функции мощности и регистрирует его на своем индикаторе. Если к электрической сети вместо нагрузки подключить емкость, то ток по фазе будет опережать напряжение на 90 градусов. Это приведет к тому, что функция мощности будет расположена симметрично относительно положительных и отрицательных значений. Следовательно интеграл, от нее будет иметь нулевое значение, и счетчик ничего не будет считать. Иными словами попробуйте включить любой неполярный конденсатор после счетчика. Вы увидите, что на него счетчик никак не реагирует. Причем, независимо от емкости. Принцип работы инвертора, простой, как двери и состоит в использовании 2-х конденсаторов, первый из которых заряжают от сети в течение первого полупериода сетевого напряжения, а в течение второго — разряжают через нагрузку потребителя. Пока нагрузка питается от первого конденсатора второй также заряжают от сети без подключения нагрузки. После этого цикл повторяется.
Таким образом, нагрузка получает питание, по форме в виде пилообразных импульсов, а ток потребляемый от сети- почти синусоидальный, только его апроксимирующая функция опережает по фазе напряжение. Следовательно счетчик учитывает не всю потребленную электроэнергию. Достичь смещения фаз 90 градусов не возможно, так, как заряд каждого конденсатора завершается за четверть периода сетевого напряжения, но апроксимирующая функция тока через электрощетчик при правильно подобранных параметрах емкости конденсаторов и нагрузки может опережать напряжение до 70 градусов, что позволяет счетчику учитывать всего четверть от фактически потребленной электроэнергии. Для питания нагрузки, чувствительной к форме напряжения, на выходе устройства можно установить фильтр, чтобы приблизить форму питающего напряжения к правильной синусоиде.
Проще говоря инвертор представляет собой несложное электронное устройство, преобразующее реактивную мощность в активную (полезную). Устройство включается в любую розетку, а от него питается мощный потребитель (или группа потребителей). Оно сделано таким образом, что потребляемый им ток по фазе опережает напряжение на 45..70 градусов. Поэтому счетчик воспринимает устройство как емкостную нагрузку и не учитывает большую часть фактически потребленной энергии. Устройство, в свою очередь, инвертируя полученную неучтенную энергию, питает потребители переменным током. Инвертор рассчитан на номинальное напряжение 220 В и мощность потребителей до 5 кВт. При желании мощность может быть увеличена. Главным достоинством устройства является то, что оно одинаково хорошо работает с любыми счетчиками, в том числе с электронными, электронно-механическими и даже новейшими, которые имеют в качестве датчика тока шунт или воздушный трансформатор. Вся электропроводка остается нетронутой. Заземление не нужно. Схема представляет собой мост на базе четырех тиристоров с несложной схемой управления. Собрать и настроить устройство можно самостоятельно, имея даже небольшой радиолюбительский опыт.
Самодельный асинхронный генератор
Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.
Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:
- более высокую степень надёжности;
- длительный срок эксплуатации;
- экономичность;
- минимальные затраты на обслуживание.
Эти и другие свойства асинхронных генераторов заложены в их конструкции.
Устройство и принцип работы
Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.
Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.
Рис. 1. Ротор и статор асинхронного генератора
Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.
Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).
Рис. 2. Асинхронный генератор в сборе
Принцип действия
По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.
В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.
При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.
Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.
На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.
Рис. 3. Схема сварочного асинхронного генератора
Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.
Рисунок 4. Схема устройства с индуктивностями
Отличие от синхронного генератора
Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).
Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.
Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:
- ИБП;
- регулируемые зарядные устройства;
- современные телевизионные приёмники.
Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.
Классификация
Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.
На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.
Рис. 5. Типы асинхронных генераторов
Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.
Область применения
Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.
Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.
Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.
Сфера применения довольно обширная:
- транспортная промышленность;
- сельское хозяйство;
- бытовая сфера;
- медицинские учреждения;
Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.
Асинхронный генератор своими руками
Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):
Рис. 6. Заготовка с наклеенными магнитами
Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.
Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.
Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.
Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.
Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .
При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.
Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.youtube.com/watch?v=ZQO5S9F72CQ
Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs
Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8
Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE
Часть 5
https://www.youtube.com/watch?v=z2YSqVh1vM8
Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA
Для упрощения подбора конденсаторов воспользуйтесь таблицей:
| Мощность альтернатора (кВт-А) | Ёмкость конденсатора (мкФ) на холостом ходу | Ёмкость конденсатора (мкФ) при средней нагрузке | Ёмкость конденсатора (мкФ) при полной нагрузке |
| 2 | 28 | 36 | 60 |
| 3,5 | 45 | 56 | 100 |
| 5 | 60 | 75 | 138 |
На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.
Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.
Рис. 7. Схема подключения конденсаторов
Советы по эксплуатации
Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.
Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.
При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.
Генератор реактивной мощности своими руками
Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.
- Главная
- Каталог самоделки
- Дизайнерские идеи
- Видео самоделки
- Книги и журналы
- Форум
- Обратная связь
- Лучшие самоделки
- Самоделки для дачи
- Самодельные приспособления
- Автосамоделки, для гаража
- Электронные самоделки
- Самоделки для дома и быта
- Альтернативная энергетика
- Мебель своими руками
- Строительство и ремонт
- Самоделки для рыбалки
- Поделки и рукоделие
- Самоделки из материала
- Самоделки для компьютера
- Самодельные супергаджеты
- Другие самоделки
- Материалы партнеров

Работа асинхронного двигателя в режиме генератора
В статье рассказано о том, как построить трёхфазный(однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.
Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели–самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.
Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название-короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.
По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.
В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.
Автономные асинхронные генераторы — трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.
Рис.1 Стандартная схема включения асинхронного электродвигателя в качестве генератора.
Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.
В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:
Генератор обратной мощности для электросчетчика: схема
Устройство компенсации реактивной мощности – далеко не новинка, но заговорили о нем недавно. Все дело в том, что подобные системы вполне успешно применяются на производственных объектах, а вот устройства для жилого сектора появились не так давно и стали предметом горячих споров на счет их эффективности. Генератор обратной мощности для электросчетчика производится в Китае. Если верить рекламе, он позволяет сократить расход электроэнергии на 5%. Так ли это? Однозначно ответить не получится, так как для начала нужно разобраться в принципе действия такого устройства и в процессах потребления электроэнергии различными потребителями.
Нагрузка
В данном контексте под понятием нагрузка подразумеваются все электроприборы, которые применяются в доме или квартире и потребляют электроэнергию. Наверняка всем известно, что такое КПД – коэффициент полезного действия. Этот параметр определяет сколько электроэнергии затрачивается на полезное действие, а сколько на побочный эффект. Например, взять лампу накаливания, ее главная задача светить, но при этом она еще нагревается. Приблизительно 40% затраченной энергии тратится на нагрев и лишь 60% на свет. Отсюда КПД = 0,6. Здесь все просто, но вот существует еще и коэффициент мощности или как говорят косинус фи. Что же это такое?
Сдвиг по фазе
Как известно, в бытовой электросети применяется переменное напряжение. Если его изобразить на графике, то получится синусоида (волна). По оси ординат определяется напряжение, а по абсцисс – время. Учитывая, что частота в сети 50 Гц, фаза длится 1/50 секунды. За это время на графике потенциал фазы возрастает от 0 до +220. Потом падает до -220 и возрастает опять до 0, то есть полный цикл. Теперь представим, что подключили нагрузку, например, утюг и появился ток.
Добавим на графике еще одну синусоиду теперь уже тока, а не напряжения. Руководствуясь законом Ома, определим его величину для каждого полупериода и увидим, что получилась идентичная синусоида, в которой гребни и впадины волн по вертикали полностью совпадают с графиком напряжения. Другими словами, ток не отстает и не опережает напряжение, то есть сдвига нет.
Ситуация кардинально меняется, когда вместо утюга включаем в цепь пылесос или вентилятор. Если посмотреть на графики, полученные на осциллографе, то увидим, что ток отстает от напряжения, то есть происходит сдвиг тока по фазе. Величина сдвига определяется через косинус угла сдвига и является коэффициентом мощности.
Представим работу генератора. В момент вращения, когда южный полюс, возбуждающей обмотки ротора, выравнивается с магнитопроводом статора индукционной катушки фазы «А», напряжение фазы достигает пикового значения. По мере проворачивания ротора напряжение фазы «А» падает. А теперь добавим схему с вентилятором, когда ток отстает от напряжения. Это значит, что ток достигнет пика позже, чем напряжение и ротор уже провернется на какой-то угол. Вот именно этот угол и называется «φ».

Коэффициент мощности
На графике коэффициент мощности – это расстояние по оси абсцисс между волной напряжения и тока, а вычисляется оно через косинус угла сдвига. К примеру, угол сдвига 60°, а cos 60° = 0,5, в результате коэффициент мощности такого потребителя равен 0,5. Это означает, что 50% потребляемой электроэнергии преобразуется в полезное действие, а остальные 50% возвращаются обратно в сеть. При этом электросчетчик учитывает всю электроэнергию и за нее нужно платить. Можно ли сделать так, чтобы реактивная энергия не учитывалась – да, но для начала следует учитывать множество нюансов.
Внимание! Не следует путать компенсаторы реактивной энергии с устройствами для «отмотки» электросчетчика. За применение вторых предусматривается уголовная ответственность.
Активная и реактивная энергия
Из приведенных примеров ясно, что не все электроприборы вызывают сдвиг по фазе, а только те у которых cos φ отличен от «1». Исходя из того, что косинус – это отношение прилежащего катета к гипотенузе, единица получится только в том случае если угол равен «0», то есть сдвига нет. Зависит это от вида электрического сопротивления, которых существует всего 3. Это активное, индуктивное и емкостное сопротивление. Теперь рассмотрим их подробнее.
Активное сопротивление
Его еще называют омическое. Другими словами, это сопротивление материала, которое неизменно при любых обстоятельствах (кроме температуры). К приборам с таким сопротивлением относятся ТЭНовые нагреватели (электроплиты, конвекторы и др.), а также лампы накаливания. Мощность таких приборов равняется произведению тока и напряжения, а ток в свою очередь зависит от сопротивления и рассчитывается по закону Ома: I = U/R. КПД активной нагрузки может быть разным, а вот cos φ, коэффициент мощности всегда равен 1.

Индуктивное
Если замерять сопротивление первичной обмотки сварочного трансформатора омметром, то увидим достаточно малое значение – всего где-то 2-4 Ом. Казалось бы, при подаче напряжения должно произойти короткое замыкание, но в реальности все работает нормально. Здесь закон Ома отступает и работает совсем другая формула. В катушке ток нарастает медленнее напряжения и возникает сдвиг тока по фазе в сторону отставания. Рассчитывается индуктивное сопротивление так: XL = 2 π FL. Где XL — сопротивление катушки, π – константа (3,14), F – частота тока, а L – индуктивность катушки.

Емкостное
Таким сопротивлением обладает простой конденсатор, а вычисляется оно по формуле Xc = ½ π FC, где Xc – емкостное сопротивление (Ом), F – частота (Гц) и C – емкость (Ф). При подключении конденсатора в цепь сдвиг тока происходит в сторону опережения.
В двух последних случаях сопротивление зависти от частоты тока, а в первом (омическом) – частота не влияет на сопротивление. Именно потребители с индуктивным и емкостным сопротивлением заставляют платить за лишнюю электроэнергию.

Компенсация реактивной энергии
В силу характера работы таких приборов избежать эффекта реактивной энергии нельзя, но его можно компенсировать. Можно провести эксперимент, подключив в сеть катушку (трансформатор на холостом ходу) и замерив ток в цепи. Важно не показание, а его наличие. Теперь рассмотрим такую же схему с конденсатором вместо катушки. Ток также будет. Это значит, что никакой работы не производится, а счетчик считает.

Если же подключить катушку и конденсатор параллельно, то амперметры 1 и 2 покажут ток на катушке и на емкости. В то же время амперметр 3 при условии равенства коэффициента мощности обеих потребителей покажет значение ноль. Задача выполнена и сдвиг тока в одну сторону компенсирован аналогичным сдвигом в другую сторону.

Именно по этому принципу и работает так называемый «генератор обратной мощности». Но как это работает на практике и какая будет экономия?
Промышленные компенсаторы реактивной энергии
На любом предприятии есть определенный набор оборудования и четкий алгоритм работы. Это значит, что суммарный сдвиг по фазе можно определить подсчетом или замерами. За счет этого несложно подобрать нужную емкость конденсаторной батареи и рассчитать периодичность ее подключения. На практике подобные установки позволяют сэкономит до 4% электроэнергии, что при общем расходе в тысячи или десятки тысяч киловатт довольно ощутимо.
Важно! Применение компенсаторов реактивной энергии вполне законно.
Бытовые устройства
Целесообразность покупки генератора обратной мощности для дома остается под большим сомнением. Производители таких устройств попросту не могут знать какая техника у вас дома, когда и сколько работает пылесос, вентилятор, какой мощности у вас холодильник и сколько в доме электроники с конденсаторами и блоками питания. Обычно подобные устройства рассчитываются, как говорится, «на глаз» и речи о 5% экономии быть не может. Максимум чего можно достичь – это 0,5 или от силы 1 %. Учитывая цену перелагаемых в интернете устройств, при такой эффективности их окупаемость почти нулевая. Так стоит ли?
Намного эффективнее применить этот принцип индивидуально и на основе замеров угла отклонения самому подобрать нужную емкость для каждого более-менее мощного оборудования с электродвигателем.