Принципы построения БЕЗЖЕЛЕЗНЫХ аксиальных генераторов для ветряка на постоянных магнитах.

В данной теме предлагаю обсуждать общую теорию и практику построения безжелезных генераторов, чтобы не флудить в авторских темах, замусоренных до безобразия.
Аксиальный БЕЗЖЕЛЕЗНЫЙ (без железного сердечника в обмотке статора) генератор подчиняется закону движения проводника в магнитном поле: при движении проводника в магнитном поле на его концах под действием силы Лоренца индуцируется ЭДС (электродвижущая сила). Причём, для максимума ЭДС, проводник должен быть прямолинейным и располагаться перпендикулярно направлению движения. Если проводник расположен вдоль направления движения, то ЭДС в нём, по формуле закона, не индуцируется.
Для упрощения реальных конструкций, применяется движение магнитов, а не проводников, что позволяет отказаться от скользящих щёток и коллекторов.
ЗДС рассчитывается по известной формуле E=BLV*sin(фи), где B-индукция магнитного поля в месте нахождения проводника (не путать с остаточной индукцией магнитного материала Br), L – длина активной части проводника, т.е. той части, которая находится в магнитном поле, V – линейная скорость движения проводника относительно магнита, фи – угол между проводником и направлением движения. В случае фи = 90град, sin 90 = 1. Формула приобретает привычный вид E = BLV.
Учебные советские фильмы тут:
https://youtu.be/zXRr4YReNPg
https://youtu.be/yhxHTAKKTT0
Программа для предварительного расчёта ЭДС аксиального безжелезного генератора есть тут: http://www.rlocman.ru/forum/showthre. 617#post190617
На индуцирование ЭДС в обмотке генератора влияют разные факторы – расположение магнитов и их количество, зазор между магнитами, количество дисков с магнитами, расположение проводников относительно магнитов, количество фаз и т. д. От оптимального выбора этих параметров и множества нюансов зависит мощность и КПД генератора.
Предлагаю именно в этой теме и обсуждать все проблемы таких генераторов.


САШУН пишет:
Для лучшего понимания простой, с виду, вопрос. Вот У Владимира74 магниты — прямоугольные. И расположены ПОЧЕМУ-ТО длинной стороной по радиусу, а короткой — по окружности.
Знаете почему? Не знаете.
Ответ — просто не подумал. Ежели просто повернуть каждый магнит на 90 градусов — генератор с РЕДКО расположенными по окружности обмотками работать будет чуток получше.
НЕПРАВИЛЬНЫЕ мысли!
ЭДС считается по формуле E=BLV, тут видно, что ЭДС больше, когда больше длина проводника. Проводника над магнитом, длина активной, радиальной части всей обмотки.
Если магнит перевернуть, то длина уменьшится с 50мм до 20мм, соответственно уменьшится ЭДС.
Кроме этого, что не маловажно, увеличится значительно длина соединительных проводников, продольных, так называемых лобовых частей обмотки. Значит увеличится сопротивление обмотки и потери увеличатся.
Можете в проге http://www.rlocman.ru/forum/showthre. 617#post190617 прикинуть как это всё будет.

Я же не так прост, как это может показаться издали.
Цель генератора — вовсе не вырабатывать ЭДС. Если я буду чесать своего кота (перс Максимилиан фон Кардинал — см. фото) ЭДС будет ОГО-ГО, а вот энергии электрической — пшик!
Задача генератора вырабатывать электроэнергию, а не ЭДС. Поэтому тезис об уменьшении ЭДС при повороте магнита не принимается.
ЭДС хотя будет и меньше, зато вырабатываться будет ДОЛЬШЕ — магнит будет двигаться над каждым проводником фазы в 2,5 раза дольше, и конкретно электроэнергии выработает БОЛЬШЕ.
Поэтому ПРОСЬБА.
Написать в обоснование своего тезиса формулку для ЭНЕРГИИ, а не для ЭДС. В эту формулку, как Вам известно, входит СИЛА, которую нужно прикладывать к магниту, чтобы двигать его ПОПЕРЕК проводников с их амперами и витками, причем, никаких ни ЭДС ни Вольтов в этой формулке нету.
Изображения
| cat_best.jpg (32.0 Кб, 0 просмотров) |

Как китайцы полностью победили «залипание» в НЕбезжелезных генераторах.
Случайно нашел в сети 2 ролика какого-то «умельца», который захотел улучшить китайский генератор и что из этого получилось.
Оно в середине 1-го длинного ролика есть ЗАМЕЧАТЕЛЬНОЕ место — демонстрация полного ОТСУТСТВИЯ залипания — ротор генератора крутится двумя пальчиками. а во втором ролике, что случится, если НЕ ПОДУМАВ, попытаться «улучшить» конструкцию.
https://www.youtube.com/watch?v=6hE7dcWxGuk
https://www.youtube.com/watch?v=ymSzE2265K0
P.S. Я невзлюбил «заводских рационализаторов» лет 35 назад, когда получил первый десяток патентов из больше 80. Большинство из них плохо образованы и просто не понимают основные принципы работы машин и механизмов. Хотя встречаются и исключения.

Сашун;
. Цель генератора — вовсе не вырабатывать ЭДС. .
ЭДС — электродвижущая сила, первоисточник энергии.
Мощность — скорость расходования энергии. Для эл. генератора P=U*I
Как видно, мощность это ПРОИЗВЕДЕНИЕ тока на напряжение. Одну и туже мощность можно получить малым напряжением и большим током ИЛИ большим напряжением и малым током. ГЛАВНОЕ — ПРОИЗВЕДЕНИЕ. И естественно мощность привода генератора (ветродвигатель, мотор ДВС и т.п.) должна быть немного больше.
В безжелезном гене нет потерь на перемагничивание в сердечнике, сердечник не входит в насыщение при больших мощностях, т. к. его нет. Поэтому ТОК в безжелезном гене больше всего завсит от сопротивления обмотки. А сопротивление от сечения провода. Толще провод, больше ток, больше мощность при одинаковых остальных параметрах. Ну это же ясно как светлый день!
Задача генератора вырабатывать электроэнергию, а не ЭДС. Поэтому тезис об уменьшении ЭДС при повороте магнита не принимается.
ЭДС хотя будет и меньше, зато вырабатываться будет ДОЛЬШЕ — магнит будет двигаться над каждым проводником фазы в 2,5 раза дольше, и конкретно электроэнергии выработает БОЛЬШЕ.
Ничего не больше! Это называется ЧАСТОТА переменного тока. Посчитайте площадь одной большой, ШИРОКОЙ, долгой полуволны и десяток маленьких УЗКИХ горбиков. Площадь одинакова. Мощность переменноьго тока не зависит от его частоты в электротехнике. ВЧ и СВЧ системы к этомк отношения не имеют.
Поэтому ПРОСЬБА.
Написать в обоснование своего тезиса формулку для ЭНЕРГИИ, а не для ЭДС. В эту формулку, как Вам известно, входит СИЛА, которую нужно прикладывать к магниту, чтобы двигать его ПОПЕРЕК проводников с их амперами и витками, причем, никаких ни ЭДС ни Вольтов в этой формулке нету.
ЭНЕРГИЯ измеряется в киловатт-часах, мощность помножить на время действия этой мощности.
Сила про которую вы говорите, это сила противодействия F=IBL, из этого видно, что чем больше ток в обмотке и нагрузке, тем больше сила противодействия. Эта сила противодействия равна силе действия привода генератора (без учёта КПД).
Линейный генератор на постоянных магнитах своими руками
Секрет магнитного генератора Перендева. Делаем своими руками
Всем доброго вечера, мы с отцом уже давно ломаем голову над знаменитым двигателем Perendev перепробовали много вариантов, был у нас один двигатель суть его в том чтобы на роторе разместить магниты как можно плотнее и все с одним полюсом наружу а на статоре разместить три полюса магнитов которые будут сдвинуты друг от друга (во общем то что Perendev сделал за счет трех дисков):
Вот статья неплохая по поводу принципа роботы двигателя Perendev которая дает ответы на многие вопросы.
При внимательном изучении патента перендева (ссылка на патент находится на российский странице, вход с немецкого сайта) обнаружился рисунок собственно «единичного элемента», то-бишь экранированного магнита.
Судя по чертежу, цилиндрический магнит находится внутри не просто толстостенного железного цилиндра, а внутри цилиндра, на торце которого добавлено кольцо металла.
Таким образом края магнита, (с максимальными магнитными потоками) спрятаны в железо. Для взаимодействия оставлена только площадка в центре магнитной «таблетки».
Видимо, для проверки принципа достаточно промоделировать несколько вариантов единичного элемента — учесть геометрию цилиндра, изображенного в патенте, и изготовить его из нержавейки (как утверждает автор) и из обычного магнитомягкого железа. Скорее всего, сам магнит должен удерживаться внутри цилиндра неким кольцом из изолятора, чтобы не соприкасался с железом, иначе пойдет намагничивание цилиндра со всеми последствиями.
Что касается графита, согласно утверждению автора, то я сомневаюсь, чтобы сочетание нержавейки с графитом в любых геометрических положениях смогло хотя бы частично экранировать магнит.
Однако, можно попробовать проверить и это.
Я проверил с обычным цилиндром из нержавейки с таблеткой внутри, экранирования нету.
———————————
В интервью Брэди нашел фразу, что все магниты срезаны на конус, изолированы прослойкой и вставлены в экранирующие цилиндры.
Основная идея в следующем:
Поясню без рисунка. На пальцах.
Возьмем отрезок времени 5 секунд, (для простоты).
на цилиндрическом роторе находится скажем 9 или 11 магнитов. а на статоре соответственно 8 или 10.
в первую секунду 1й магнит ротора находится в мертвой точке. На него действует максимальная сила противодействия движению =х. В эту-же секунду магнит 2 уже прошел свою мертвую точку,и тянет с некоторым плюсовым усилием . соответственно №3 тоже находится после мертвой точки, и тоже в плюсе. и так до №9.
во вторую секунду в мертвую точку входит №2, а все остальные в эту же вторую секунду (или любую другую минимальную единицу времени) тянут с положительным усилием, компенсируя мертвую точку.
Смысл в том, что при разном количестве магнитов в статоре и роторе, их расположение должно быть таким, чтобы в ЛЮБОЙ момент времени в МТ находился ТОЛЬКО ОДИН магнит, а все остальные, количество которых не может быть меньше какого-то определенного чмсла, должны своим суммарным тяговым усилием компенсировать прохождение этой единичной мертвой точки.
Количество магнитов нужно подсчитывать в каждом конкретном случае отдельно.
Несомненно одно, построить модель на 3-5 магнитах не получится по определению.
Количество роторных должно быть таким, чтобы сумма находящихся в разном положении магнитов ротора относительно статора была БОЛЬШЕ усилия мертвой точки для единичного магнита, или, если угодно, пары ротор-статор, зависших в МТ.
Нужно просто понять этот принцип.
Три кольца прототипа у Perendev создаст только повышенную мощность, для раскрутки генератора в 20 квт (видео). Но каждое отдельно взятое кольцо, вернее- пара, ротор-статор имеют как раз такой расклад сил.
Безусловно, нужно очень точно позиционировать магниты на кольце, чтобы соблюсти это условие.
а добавки Perendev в виде изолирующих железных цилиндров просто убирают паразинтые влияния магнитов друг на друга, оставляя в голом виде этот самый принцим, поскольку при подходе к МТ , имея экран, магнит ротора взаимодействует только со своим статорным магнитом, не чувствуя паразитных полей соседних магнитов статора и ротора.
Т.е принцип в чистом виде.
Совершенно понятно, что такие конструкции возможны только в цилиндрических формах, однако проверить правильность этого моего утверждения можно и на линейной модели.
Для этого расстояния между магнитами ротора на линейке должны быть больше на какую-то величину, чем расстояние между магнитами статора на другой линейке.
Но ни в коем случае НЕ равными.
Для примера можно разместить на линейном статоре 30 магнитов с интервалом 10 мм, а на роторной линейке штук 9-11 с интервалом в 11 мм.
Аксиальный генератор на ферритовых магнитах

Наверное многих интересует возможность использования альтернативной энергии. Автор данного устройства как раз является одним из таких, он так же читал различные статьи в интернете посвященные возобновляемых источникам энергии. Особенно его заинтересовало использование энергии ветра, так как в его местности ветра довольно сильные и он сразу понял, что должная конструкция ветрового генератора будет выдавать довольно большое количество энергии.
Ознакомившись с основными типами ветряков и используемых в них генераторах, автор остановился на аксиальном генераторе с ферритовыми магнитами.
Материалы, которые были задействованы автором для создания данного генератора:
1) металлическая труба
2) подшипники
3) шпилька
4) алмазные диски диаметром 22 см
5) 40 ферритовых магнитов
6) эпоксидная смола
7) провод толщиной 0.5 мм
8) уголок металлический
9) шуруповерт
10) фанера
11) лобзик
Рассмотрим более подробно конструкцию данной модели генератора, а так же основные этапы его сборки.
Данный генератор был построен полностью с нуля. Его основой послужила ступица, которую автор собрал самостоятельно из отрезка трубы. В данную трубу были установлены подшипники и шпилька. Приварив к данной трубе несколько отрезков уголка, автор получил готовую основу для крепления статора будущего генератора своего ветряка.
Ступица, и уголки для крепления статора, разметка перед сваркой

В качестве роторов генератора автор решил использовать алмазные диски с диаметром около 220 мм. Для того, чтобы точно закрепить на них все ферритовые магниты, автор расчертил их таким образом, чтобы получилось двадцать одинаковых секторов, на стыках которых и были размещены магниты. Для того, чтобы магниты были надежно закреплены на дисках, автор использовал супер клей и эпоксидную смолу: для начала магниты были зафиксированы каплей супер клея, а затем залиты эпоксидной смолой.
Установка магнитов на диски ротора:

Так примерно будут стоять диски ротора:


Данная оправа понадобилась автору для того, чтобы более легко и удобнее намотать 15 катушек проводов. Именно такое количество катушек решил использовать автор для создания статора. Приспособление для намотки одевалось на шуруповерт, после чего он включался и автор наматывал 325 витков провода толщиной 0.5 мм. Такое большое количество витков провода для катушек автор обуславливает тем, что ферритовые магниты, использованные для создания генератора, довольно слабые. Итоговая толщина катушек составила 9 мм. Поэтому замеры сопротивления одной фазы показали значение в 18.5 Ом, что понятное дело не является лучшим показателем для постройки генератора, но благодаря такой конструкции катушек, напряжение будет в пределах нормы и подойдет для зарядки аккумуляторов.
Готовые катушки статора, провод 0,5 мм по 325 витков, толщина 9 мм:

После того как катушки были полностью готовы, автор решил приступить к изготовлению статора на их основе. Для начала автор взял лист фанеры и вырезал необходимую форму для статора. В эту форму автор планирует поместить катушки и залить их эпоксидной смолой. Чтобы затем было проще отделить статор от формы, автор обтянул фанерную заготовку скотчем. После чего все шесть проводов от фаз были соединены вместе и все залито эпоксидной смолой.
Катушки статора перед заливкой эпоксидной смолой:

Форма для отливки статора, под низом шаблон с пленкой, края формы обклеены скотчем:

Когда форма затвердела, автор отделил ее от заготовки и получил готовый статор. Следующим шагом автор собрал все части генератора воедино и протестировал его вручную. Таким образом, при соединении в треугольник и раскрутке генератора от руки, ток короткого замыкания получился около 1.5 ампер и напряжение в 15 вольт. Так же автор протестировал генератора при помощи шуруповерта. Для этого шуруповерт был специально соединен с генератором и автору удалось раскрутить до 700 оборотов в минуту и получить напряжение в 47 вольт.
Готовый статор аксиального генератора:

Общий вид готового генератора для ветряка


Затем автор приступил к сборке выбору подходящего винта для данной модели генератора. Было изготовлено несколько винтов из ПВХ трубы диаметром 110 мм. Однако подобные винты не давали необходимых результатов, так как были слишком тихоходными и не развивали нужных скоростей для полноценной работы генератора.
Генератор с винтом перед установкой на мачту:
Линейный генератор: устройство, принцип работы, плюсы и минусы
![]()
Традиционные двигатели внутреннего сгорания отличаются тем, что в качестве начального звена выступают поршни, которые выполняют слаженные возвратно-поступательные движения. После изобретения кривошипно-шатунных агрегатов специалисты смогли достичь вращательного момента. В некоторых современных моделях оба звена совершают один вид движений. Именно этот вариант считается наиболее практичным.
Например, в линейном генераторе нет необходимости воздействовать на возвратно-поступательные действия, извлекая при этом прямолинейную составляющую. Применение современных технологий позволило адаптировать для пользователя выходное напряжение агрегата, за счет этого часть замкнутого электрического контура совершает не вращательные движения в магнитном поле, а только поступательные.

Описание
Линейный генератор часто называют изделием на постоянных магнитах. Агрегат предназначен для эффективного преобразования механической энергии дизельного двигателя в выходной электрический ток. За выполнение этой задачи отвечают постоянные магниты. Качественный генератор может быть выполнен на основе разных геометрических схем. Например, стартер и ротор могут изготавливаться в виде соосных дисков, которые вращаются относительно друг друга.
Эксперты называют такие линейные генераторы дисковыми или просто аксиальными. Используемая на производстве схема позволяет создавать высококачественные агрегаты компактных размеров с наиболее плотной компоновкой. Такое изделие можно смело устанавливать в ограниченном пространстве. Самыми востребованными считаются цилиндрические и радиальные генераторы. В таких изделиях стартер и ротор выполнены в виде соосных цилиндров, вложенных друг в друга.

Характеристика
Линейный генератор относится к сфере энергомашиностроения, так как умелое его использование позволяет повысить топливную экономичность и минимизировать выбросы токсичных газов в распространенных свободнопоршневых двигателях внутреннего сгорания. В автономном изделии, в котором электричество преобразуется при помощи сцепления между постоянным магнитом и неподвижной обмоткой, спаренные с поршнями цилиндры имеют характерную коническую форкамеру. Генератор функционирует с измененными ходами сжатия. Обмотка и поисковой магнит устроен так, что итоговое соотношение между количествами механической энергии, применяемой для производства электричества, равно имеющемуся между степенями сжатия.
Конструкция
Поисковой магнит в классических генераторах отличается принципом строения, так как производители полностью исключили трущиеся детали, такие как токоснимающие щетки и коллекторы. Отсутствие таких механизмов повышает степень надежности работы дизельной электростанции. Конечному потребителю не придется тратить большие суммы на техническое обслуживание оборудования. Устройство линейного генератора на дизельном топливе с постоянными магнитами позволяет экспертам надежно обеспечивать ценной электроэнергией различные лаборатории, жилые дома, а также небольшие производственные объекты.
Высокая степень надежности, доступность и легкий запуск делают такие установки просто незаменимыми в том случае, когда нужно обеспечить наличие резервного источника питания. К негативным сторонам линейных генераторов можно отнести то, что самая надежная конструкция не позволяет получить высокого напряжения выходного тока. Если же нужно обеспечить электроэнергией мощное оборудование, тогда пользователю придется задействовать многополосные модели, стоимость которых значительно выше базовых установок.

Линейные цепи
Это отдельная категория деталей, которая пользуется огромным спросом среди профессионалов. В соответствии с законом Ома ток в линейных электрических цепях пропорционален приложенному напряжению. Уровень сопротивления постоянен и абсолютно не зависит от приложенного к нему напряжения. Если ВАХ электрического элемента является прямой линией, то такой элемент называется линейным. Стоит отметить, что в реальных условиях сложно добиться высоких показателей, так как пользователю нужно создать оптимальные условия.
Для классических электрических элементов линейность носит условный характер. Например, сопротивление резистора зависит от температуры, влажности и других параметров. В жаркую погоду показатели существенно возрастают, из-за чего механизм теряет свою линейность.

Преимущества
Универсальный линейный генератор на постоянных магнитах выгодно отличается от всех современных аналогов многочисленными положительными характеристиками:
- Небольшой вес и компактность. Такой эффект достигается за счет отсутствия кривошипно-шатунного механизма.
- Доступная цена.
- Качественная наработка на отказ из-за отсутствия системы сжигания.
- Технологичность. Для производства долговечных деталей используются исключительно нетрудоемкие операции.
- Регулировка объема камеры сгорания топлива без остановки двигателя.
- Базовый ток нагрузки генератора не влияет на магнитное поле, что не влечет за собой снижение характеристик оборудования.
- Отсутствует система зажигания.

Недостатки
Несмотря на многочисленные положительные характеристики, многофункциональный генератор с качественными втулками рабочего цилиндра имеет некоторые отрицательные характеристики. Негативные отзывы владельцев связаны со сложностью получения выходного напряжения в виде синусоида. Но даже этот недостаток можно легко устранить, если задействовать универсальную электронную и преобразовательную технику. Новичкам нужно быть готовыми к тому, что агрегат оснащен несколькими цилиндрами внутреннего сгорания. Классическая регулировка объема топливной камеры осуществляется по тому же принципу, что и в тестовой заготовке.
Дизельные установки
Каждый мужчина может сделать своими руками линейный генератор, который будет обладать оптимальными эксплуатационными характеристиками. Главное – придерживаться основных рекомендаций и заранее подготовить все необходимые инструменты. Дизельный линейный генератор пригодится в том случае, если пользователю приходится самостоятельно вносить изменения в существующую электрическую сеть. Агрегат поможет существенно упростить осуществление профессиональных и бытовых задач. Любое изделие нуждается в периодическом техническом обслуживании. С такими манипуляциями справится любой мастер, если будет знать принцип работы механизма.

Ограничения
Все большую популярность приобретает доступный и надежный линейный генератор. В качестве источника энергии этот агрегат можно использовать как в бытовой, так и промышленной сфере. Но каждый пользователь должен помнить о некоторых ограничениях. В процессе эксплуатации стираются кулачки приводов клапанов, в результате чего механизм не открывается, из-за чего мощность падает до критических отметок.
Из-за частой эксплуатации быстро прогорают края горячего клапана. В устройстве присутствуют вкладыши – подшипники скольжения, которые расположены на шейке коленвала. Со временем эти изделия тоже стираются. В результате образуется свободное пространство, через которое начинает проходить заправленное масло.

Топливный насос
Привод этого агрегата представлен в виде кулачковой поверхности, которая прочно зажата между роликом поршня и самого корпуса. Механизм совершает возвратно-поступательные движения вместе с шатуном двигателя внутреннего сгорания. Если мастер планирует изменить количество выталкиваемого за один такт топлива, то он обязательно осуществляет аккуратный поворот кулачковой поверхности по отношению к продольной оси. В этой ситуации ролики поршня насоса и корпуса будут сдвигаться либо раздвигаться (все зависит от направления вращения). Итоговые значения напряжения и электроэнергии, вырабатываемые во время различных циклов, нельзя отнести к категории автоматически пропорциональных изменений механической энергии.
Такой подход предусматривает применение крупногабаритных аккумуляторных батарей, которые чаще всего устанавливают между частью внутреннего сгорания и электродвигателями. Использование линейного генератора позволяет сохранить благоприятную экологическую обстановку окружающей среды. Экспертам удалось минимизировать образование токсичных составов при работе агрегата, что высоко ценится в современном обществе.
Как правильно делать дисковый генератор инструкция
Здравствуйте, мне часто пишут по поводу того как лучше делать аксиальный дисковый генератор, сколько магнитов должно быть и сколько катушек. Спрашивают каким проводом нужно мотать катушки, и по сколько витков. Спрашивают про соотношение магнитов к катушкам, и про то как соединять катушки между собой. Вот на эти вопросы я постараюсь ответить сопровождая их рисунками.
Общие правила построения аксиального генератора
1.Расстояние между магнитов по кругу на дисках должно быть равно их ширине, но чем плотнее тем лучше, идеально если магниты будут почти вплотную друг к другу. Ниже я более подробно описал, если не можете определится делайте расстояние равным ширине магнитов, работать будет как у всех.
2. Круглые магниты, квадратные, или прямоугольные, по сути не важно, это потом отразится на форме катушек. Для первого варианта проще круглые магниты и катушки.
3.Толщина дисков должна быть равна толщине магнитов, или немного тоньше.
4.Количество витков в катушках для 12V АКБ по 60 витков, для 24V ВКБ по 90 витков.
5.Толщина статора по толщине магнитов.
6.Соотношение катушек к магнитам 4:3, на 9 катушек 12 магнитов, на 12 катушек 16 магнитов.
Однофазные генераторы не делают потому что будет сильная вибрация генератора при работе.
Соотношение магнитов к катушкам должно быть таким: на каждые три катушки должно быть по четыре магнита, соотношение 3/4. То есть на 9 катушек должно быть по 12 магнитов на дисках. На 12 катушек должно быть 16 магнитов. На 18 катушек должно быть 24 магнита (по 24 магнита на каждом из двух дисков). Можно делать соотношение и 2/3, генератор тоже будет работать, но как показали некоторые опыты такой вариант немного проигрывает, более подробно здесь — Тестирование генераторов со статорами на 12 и 18 катушек, что оказалось лучше
Магниты должны быть толщиной не менее 10 мм, можно правда и тоньше, но тогда придётся делать тонкий статор, вообще статор должен быть примерно равен толщине магнитов. Форма магнитов, круглые они, квадратные, или прямоугольные, не особо важна, потом это повлияет на форму катушек, будут ли они ровно круглые, треугольной вытянутой формы. Для крупных и мощных генераторов от 1.5кВт магниты можно ставить толщиной 15-20 мм, и делать более толстый и прочный статор толщиной 15-20 мм.
Обычно расстояние между магнитов делают равным их ширине, но чем больше площадь заполнения магнитами дисков по кругу тем лучше. Расстояние между магнитов чем плотнее тем лучше. Но если делать расстояние между магнитов равным ширине самих магнитов, или в половину ширины магнитов то тоже будет работать нормально. Из-за увеличения диаметра дисков увеличивается скорость магнитов за оборот, и напряжение катушек увеличивается пропорционально росту скорости движения магнитов.
Но работают те витки катушек, которые попадают под магниты, поэтому чем реже магниты на диске тем меньше витков катушек принимают участие в работе, и здесь выигрыш только в диаметре, но большой чес получается и много меди уходит. если расположить магниты близко друг другу то диаметр дисков становится меньше, витков в работе больше, а меди меньше. Так в общем эффективнее.
Обычно делаю расстояние между магнитов равное их ширине, но те кто делал расположение магнитов плотнее, и даже вплотную при меньших диаметра и размеров генераторов получали тот же результат. Как делать тут уже решать вам.
Для схемы 9 катушек на 12 магнитов подойдут круглые магниты, и их лучше размещать на диске почти вплотную друг к другу. Внутренний диаметр круглых катушек можно делать меньше диаметра магнита.
Для 12 катушек на 16 магнитов также можно делать круглые катушки и ставить круглые или лучше квадратные магниты. Расстояние между магнитов чем плотнее тем лучше. А так в зависимости от размеров можно сделать расстояние около 5-10 мм между магнитами, если квадратные то в самом узком месте должно быть такое расстояние.
Для 18 катушек на 12 магнитов лучше использовать прямоугольные магниты с расстоянием равным их ширине. При этом внутренняя дырка катушки должна быть почти равна размерам магнита. Если 24 магнита ставить на дисках то расстояние между магнитами будет вплотную.
Ниже рисунок для сравнения насколько перекрываются катушки магнитами если магниты ставить почти вплотную и с расстоянием между магнитами равным их ширине.
Так.же вариант перекрытия магнитами статора на 18 катушек и 12 катушек.
Какой вариант лучше на этот вопрос однозначного ответа нет, любой вариант будет работать. Проще наверное делать как большинство, с расстоянием между магнитов равным их ширине, так как медь дешевле и её можно не экономить.
Намотка катушек и соединение
Количество витков в катушках для зарядки АКБ 12 вольт обычно делается по 60 витков, если ветряк на 24 вольта то по 90 витков в катушке. Более подробно про расчёт напряжения генератора и его мощности я описал здесь — Расчёт генератора новая версия
Соединяются катушки фазы так: Начало первой катушки это начало фазы. Конец первой катушки соединяется с началом второй. Конец второй с началом третьей. Конец третьей на выход если у вас по три катушки на фазу это конец фазы. Вторая и третья фаза соединяется также как и первая. Всего на выходе должно быть шесть проводов, по два повода с каждой фазы. Далее уже можно соединить звездой, для этого три конца фаз или три начала фаз соединяются в одну точку, а три свободные конца уже на трёхфазный диодный мост. Ниже рисунок соединения одной фазы.
Лучше не соединять фазы генератора сразу звездой, а вывести из статора все концы фаз, чтобы потом можно было соединять по разному. Может быть так что с вашим винтом генератор будет лучше работать при параллельном соединении фаз.
По конструкции самого генератора есть два варианта
Первый вариант самый распространённый, диски здесь крутятся на валу, а статор больше по диаметру, и крепится шпильками с внешней стороны, тесть по внешнему диаметру. Обычно для изготовления за основу берут автомобильную ступицу и на её основе строят генератор. Второй вариант это когда статор крепится по внутреннему диаметру за неподвижный вал. А диск с подшипником надевается на этот вал, и с обратной стороны к нему притягивается второй диск.