Почему на нулевом проводе появляется напряжение?

Почему на нулевом проводе появляется напряжение

Во время эксплуатации электроприборов иногда возникает ситуация, при которой они не работают или выходят из строя, причём происходит это одновременно во всей квартире.

Это указывает на проблемы с параметрами электросети и, в некоторых случаях, при проверке наличия напряжения индикатор показывает наличие напряжения на нулевой клемме в розетке. Это аварийная ситуация и для её устранения необходимо знать, почему на нулевом проводе появляется напряжение.

Почему индикатор показывает напряжение на нуле

Простейшим прибором, указывающим на наличие напряжения, является индикаторная отвёртка, показывающая потенциал между жалом прибора и землёй. При прикосновении щупа к элементу электропроводки, находящемуся под напряжением, загорается сигнальная лампочка. Чувствительность прибора зависит от конструкции индикатора:

  • неоновая лампа — от 90В;
  • светодиод или ЖК-дисплей — от 12В.

В обычной ситуации напряжение на нулевом проводе отсутствует или недостаточно для свечения индикаторной лампы. Если он горит, то возможны два варианта:

  • На нулевом проводе находится та же фаза, что и на фазном проводе. В этом случае при измерении напряжения в розетке вольтметр покажет отсутствие потенциала. Электроприборы работать не будут, но их желательно отключить до выяснения причины неисправности. Причина этого явления чаще всего в обрыве нейтрали и напряжение должно исчезнуть после отключения всех аппаратов от сети.
  • На нейтральной клемме имеется другая фаза. В этом случае напряжение в розетке или клеммах двухполюсного автомата значительно превышает 220В и может достигать 380В. Необходимо немедленно выключить вводной автоматический выключатель или все светильники и вынуть все вилки из розеток. Такая ситуация возникает при обрыве нейтрали или коротком замыкании между фазным и нулевым проводниками.

Зачем нужен нулевой провод

Электроснабжение жилых районов и большинства промышленных предприятий осуществляется при помощи трёхфазных понижающих трансформаторов, вторичные обмотки которых соединены в «звезду». Средняя точка звезды соединена шиной с контуром заземления, поэтому такая схема называется «TN».

Первоначально это была четырёхпроводная система, в которой функции нейтрального и заземляющего проводников были объединены в проводнике «PEN», однако она не обеспечивала необходимый уровень безопасности. В этой схеме по нейтральному проводу протекает уравнительный ток, вызванный неравномерной нагрузкой на разных фазах.

Попадание напряжения на корпус электрооборудования может привести к электротравмам, поэтому для повышения электробезопасности в 30-е годы ХХ века была разработана пятипроводная система заземления TN-S.

Основной особенностью этой схемы является наличие дополнительного заземляющего провода РЕ, проложенного от глухозаземлённой нейтрали питающего трансформатора без каких-либо разрывов и выключателей до заземляющей клеммы в розетке или корпуса электроприбора.

Система заземления TN-S является самой безопасной из существующих, однако замена на неё ранее установленной схемы TN-С является дорогостоящим мероприятием, поэтому был разработан компромиссный вариант — система TN-С-S.

В этой схеме используется четырёхпроводная схема электропередач, в которой провод PEN во вводном щитке в здании разделяется на два проводника — PE и N. Место разделения подлежит обязательному разделению.

Справка! Требования к различным системам заземления указаны в ПУЭ п.1.7.

Напряжение между фазой, нулем и заземлением

Современная квартирная электропроводка выполнена при помощи трёх проводов — фазный «L», нейтраль «N» и заземление «РЕ». Напряжение между ними нормируется ПУЭ и другими нормативными документами и определяется техническим состоянием сетей электроснабжения.

Какое напряжение между нулем и заземлением

В идеальных условиях напряжение между нейтральным и нулевым проводниками отсутствует. Именно такая ситуация возникает возле нулевой точки трансформатора или места разделения проводника PEN на РЕ и N во вводном щитке в здании, но по мере увеличения длины нейтрального провода между этими проводниками появляется и растёт напряжение.

Это связано с тем, что нагрузка по фазам в трёхфазной сети распределена неравномерно и по нейтрали протекает уравнительный ток, отсутствующий в заземляющем проводе. Соответственно, в этом проводнике происходит падение напряжение и разность потенциалов между землёй и нейтралью составляет именно эту величину.

Такое напряжение не нормируется ни в одном из документов, но на практике при большой протяжённости линий электропередач может достигать 20-30В или даже больше. В некоторых случаях между этими клеммами можно даже подключить лампочку 12-36В.

Кроме обычного падения напряжения из-за протекания уравнительных токов возможно значительное напряжение между нейтралью и землёй в аварийной ситуации, вызванной обрывом нулевого провода и (или) коротким замыканием между нулём и фазой.

В этом случае уравнительный ток отсутствует, индикатор показывает напряжение на нулевом проводе, а в сети появляется перекос фаз. При этом напряжение между этими нулём и заземлением может достигать 220В.

Напряжение между фазой и нулевым и заземляющим проводниками

Напряжение между фазой и нулевым и заземляющим проводниками так же может быть различным:

  • Возле трансформаторной подстанции оно одинаковое. Из-за отсутствия падения напряжения в проводах оно равно выходному напряжению трансформатора;
  • На значительном удалении от подстанции разница в напряжении между фазой и нулевым и заземляющим проводниками определяется падением напряжения в нейтральном проводе. Поэтому разность потенциалов между фазой и нейтралью может быть как больше, так и меньше, чем между фазой и землёй.
  • При обрыве нейтрали напряжение между фазой и землёй составляет 220В, а между фазным проводом и нейтралью может достигать 380В. Это может привести к выходу из строя всех подключённых к сети электроприборов.
Совет! Для защиты бытовых приборов от перенапряжения желательно установить сразу после вводного автомата реле напряжения РН.

Почему ноль бьется током

При прикосновении к элементам, находящимся под напряжением, человек попадает под разность потенциалов между местом контакта и землёй, поэтому в обычных условиях ноль током ударить не может.

Наличие значительного потенциала на нейтральной клемме указывает на аварийную ситуацию. Существует несколько причин, почему на нулевом проводе появляется напряжение.

Обрыв нуля в квартире

Самой частой причиной того, что горит индикатор на нуле, является обрыв или плохой контакт на соединении в цепи нейтрального проводника. В том случае, если обрыв произошёл в однофазной электропроводке в квартире, напряжение на нулевую клемму попадает через включённые в розетку электроприборы на обоих контактах будет присутствовать одна и та же фаза.

Поэтому между ними будет отсутствовать разность потенциалов и при измерении напряжения вольтметром прибор покажет его отсутствие.

Такая ситуация чаще всего возникает при проведении ремонтных работ в помещении и не приводит к выходу из строя электроприборов. Кроме того, обрыв нуля может быть при выходе из строя автоматического выключателя.

Обрыв нейтрали в питающем кабеле

Намного хуже, если оборван нейтральный провод на участке между этажным щитком и местом разделения проводника PEN на РЕ и N или подключением нейтрали к питающему трансформатору. При этом по кабелю перестаёт протекать уравнительный ток и на этой клемме появляется напряжение.

Его величина, а так же напряжение в розетке зависит от равномерности распределения нагрузки по фазам и может достигать 220 и 380В соответственно. В этом случае необходимо немедленно отключить вводной автомат и обратиться в электроснабжающую компанию.

Замыкание фазы на нуль

Ещё одной причиной того, почему нулевой провод показывает напряжение, может быть короткое замыкание между фазным и нулевым проводниками с последующим перегоранием нейтрали. Чаще всего это происходит в воздушных линиях электропередач. При этом на нулевой клемме в розетке появляется ещё одна фаза и напряжение в сети составит 380В.

Необходимые действия такие же, как и в предыдущей ситуации — выключить питание линии и обратиться в соответствующие службы.

Наведенное напряжение

Наведённое напряжение, или наводка, может появляться на отключённых проводах линии электропередач большой протяжённости, проложенных рядом с действующей линией высокого напряжения.

В этом случае провода являются как бы обмотками трансформатора и на отключённой линии может появиться напряжение, достаточное для получения электрического удара. Ток при этом будет небольшим, но достаточным для того, чтобы испытать неприятные ощущения. Поэтому перед работой на отключённых кабелях необходимо проверить, есть ли напряжение на нулевом проводе.

Справка! Человек ощущает 0,01А переменного тока, протекающего через тело, а смертельным является 0,1А.

Перекос фаз

В частном секторе, сельской местности и в отдельностоящих зданиях, расположенных на значительном удалении от трансформаторной подстанции может быть ещё одна причина, почему ноль бьётся током. Это связано с падением напряжения в нейтральном проводнике при протекании по нему уравнительных токов.

Большинство воздушных линий было проложено ещё в советское время, когда самым мощным электроприбором был утюг, а на вводе в квартиру устанавливался предохранитель 5А.

Сейчас во многих домах имеются кондиционеры, электрические бойлеры, а обогрев частных домов осуществляется при помощи электроотопления. Это приводит к росту тока в проводах и, как следствие, уравнительных токов.

При этом в проводах происходит падение напряжения, в результате чего фазное напряжение может понизиться до 170-180В, а на нулевом проводнике оно может достигать 20-30В.

Устранить такую неисправность невозможно, для этого необходимо менять линии электропередач, поэтому в подобных ситуациях рекомендуется установить стабилизатор.

Важно! Пониженное напряжение так же может привести к выходу из строя электроприборов, особенно имеющих электродвигатели — холодильники, стиральные машины или кондиционеры.

Вывод

Существует ряд причин, почему на нулевом проводе появляется напряжение:

  • плохой контакт или обрыв нейтрали;
  • питающего кабеля недостаточного сечения;
  • неравномерного распределения нагрузки по фазам;
  • большой протяжённости линии и однофазной нагрузки;
  • короткого замыкания между фазным и нейтральным проводами.

В большинстве случаев такая ситуация является аварийной и требует немедленного отключения питания.

Виды и режимы работы нулевого провода — что это такое

Для выравнивания напряжения по фазам электроустановок применяется нулевой провод. Он необходим для предотвращения воспламенений приборов и пожаров. Кабель является частью нейтрали – общей точки генераторной или трансформаторной обмотки, соединенной, как звезда. Существует два типа проводника – рабочий N и защитный PE.

  1. Что такое нулевой провод
  2. Принцип работы
  3. Режимы работы
  4. Чем опасно повреждение нулевого провода
  5. Реакция электроприборов на обрыв нуля
  6. Задачи и назначение нулевого провода
  7. Повторное заземление
  8. TN
  9. TN-С
  10. ТТ
  11. IT
  12. Что такое заземление и нейтральный провод
  13. Схема подключения нейтрального провода и заземления
  14. Правила подключения нейтрали

Что такое нулевой провод

Нулевые провода в электрощитке (синий цвет)

При работе с электричеством важно понять, что такое рабочий и защитный нулевой провод. В первом случае он выравнивает напряжение по фазе, во втором – защищает зануление. Пользователи ошибочно считают, что нейтральный проводник является исключительно заземлением. Его главная функция – соединение нейтралей установок в трехфазной цепи.

При подаче различной нагрузки на каждую из фаз происходит смещение нейтрали – симметрия напряжений нарушается. Одним потребителям подается повышенное напряжение, другие получают пониженное. При низком напряжении электроприборы функционируют со сбоями, при высоком – подвергаются перегрузке и загораются. Задача нуля – уравнять повышенные и пониженные показатели, обеспечив баланс электросети.

В ПУЭ установлена расцветка нулевого провода – голубая, которая соответствует европейским стандартам.

Принцип работы

В новостройках и домах старой застройки схема передачи энергии принципиально отличаются. Электросеть новостроек сконструирована по принципу TN-S:

  • электричество поступает от трансформаторов со вторичной обмоткой, соединенной по типу «звезда» (провода, сходящиеся в нулевой точке);
  • вторая часть концов кабелей отводится к клеммам А, В, С, также соединенных в нулевой точке, и подключается по заземляющему контуру к подстанции;
  • высоковольтный провод с нулевым сопротивлением разделяется на защитный РЕ (желто-зеленый) и рабочий N (голубой).

В общем распредщитке новостройки подводятся 3 фазы, защитный проводник и нейтральный провод.

Дома старой застройки не имеют защитной проводки. Там реализована устаревшая четырехпроводная система TN-C:

  • нулевой заземленный проводник находится в распределительной коробке;
  • фаза и ноль от трансформатора подкинута к зданию через подземные или надземные высоковольтные кабели;
  • провода соединяются в щитке ввода, образуя трехфазную систему с рабочим напряжением 220 или 380 В;
  • от щитка выполняется разводка проводки на квартиры и подъезды;
  • потребители получают электроэнергию от проводов одной из фаз через сеть с напряжением 220 В;
  • разница в нагрузке устраняется за счет подвода нулевого N-провода.

Схемы подключения старых домов к электросети являются устаревшими и небезопасными.

Режимы работы

Существуют следующие режимы нейтрали электрических сетей:

  • глухозаземленный (сети на 380 вольт– 110 киловольт) – потенциалы нейтрали и земли одинаковы;
  • изолированный (сети на 6, 10 и 35 киловольт) – между нейтралью и землей наблюдаются незначительные утечки тока;
  • часть электросети с небольшим импедансом сопротивления и сопротивлением земли.

Применяют нейтральный провод для предупреждения аварийных скачков напряжений по фазе, с целью релейной защиты от замыканий фазы на землю, а также для обеспечения надежности работы электроприборов.

Чем опасно повреждение нулевого провода

Перегрев нулевых проводов из-за плохого контакта

Ноль повреждается при механических воздействиях, коротких замыканиях, некачественном подключении или в результате старости проводки. Обрыв нейтрали:

  • PEN-проводник в кабеле питания – остается один заземляющий контур, который визуально не заметно;
  • сгорание проводника в распредщитке – фазные проводники перекашиваются, показатель напряжения увеличивается до 380 В;
  • обрыв в щитке квартиры – в розетках остается вторая фаза, бытовая техника от них не запитывается.

Повреждение нейтрали исключает равность потенциалов сетей с различной нагрузкой, в результате чего может сгореть бытовая техника. Изоляция в таких случаях пробивается. В старом жилом фонде со схемой подключения TN-C (нуль – защитный проводник) при поломках существуют риски поражения током. В новостройках повреждения нуля приводит к тому, что при касании к технике чувствуются легкие разряды тока.

Разряды тока от прикосновений к корпусу оборудования также свидетельствуют о его неисправности.

Реакция электроприборов на обрыв нуля

При обрыве нуля на фазу с большим количеством потребителей увеличивается нагрузка. Напряжение при этом снижается. На фазе с меньшим числом потребителей наблюдается резкое повышение напряжения. Электроприборы могут:

  • работать со сбоями;
  • ломаться или сгорать при подключении к сети;
  • биться током, если не выполнялось заземление.

Задачи и назначение нулевого провода

Вводные нули на квартиры

Монтажная роль жильного нейтрального провода – соединение зануленных элементов электрических установок с нейтралью глухого заземления. Фактически он уравнивает разницу потенциалов фаз, отводит токи от участков с замыканием проводки, предотвращает травматизм и равномерно распределяет нагрузку по всем квартирам.

Система подводки по типу «звезды» имеет векторные показатели, идентичные подстанции трансформатора. Соединение является надежным, но только при условии качества проводов и соблюдения правил их соединения.

Повторное заземление

Повторным заземлением нулевого проводника является защита, установленная на определенных правилами ПУЭ промежутках на всей протяженности нейтрали. В задачи повторного заземления включается снижение силы напряжения в нулевом проводе и электроприборах, которые были занулены относительно грунта. Это свойство целесообразно в качестве защиты от обрыва нулевого провода и при пробое электрического напряжения на корпус электрических приборов.

Чтобы сделать повторное подключение, необходимо провести непрерывную нейтраль от щитка до нулевых проводников. В условиях многоэтажек для повторного заземления применяют различные системы.

Трансформаторная нейтраль в электрике заземляется, а доступная часть присоединяются к ней через нулевые защитные проводники. В нормальном режиме электроприемник под напряжением не находится. Система TN бывает:

  • TN-S – защитный и нулевой проводник разделяются по протяженности всей магистрали;
  • TN-C-S – функции проводов РЕ и N совмещаются в одном части проводника, выведенного от трансформатора.

Если коммуникации подключаются в частном доме, используются естественные заземлители – металлические штыри в грунте. Нормативные документы не рекомендуют применять естественные проводники, поскольку невозможно рассчитать сопротивление, которое дает почва при растекании тока.

Заземление в домах, построенных до середины 90-х, для которой использовался четырехпроводной способ – 3 фазы и 1 нуль. Защитную и рабочую функции нейтрали выполняет общий проводник на протяжении всей магистрали. Запитка потребителей происходит от PEN-кабеля. Он же задействуется для заземления.

Применяется для подачи электроэнергии в загородных и сельских условиях. Ток поступает по линиям электропередач на опорах. Установки разрешены в случаях, когда TN сделать невозможно или очень дорого. При подаче повышенного тока на приборы цепь питания выключается полностью через УЗО.

Сеть с изолированной нейтралью трансформатора. Отводится от грунта или заземляется через приемник с большим сопротивлением. Линия земли проводится по отдельной шине, а на ней уже подключаются контакты розеток. Организация системы целесообразная для образовательных, медицинских учреждений.

Что такое заземление и нейтральный провод

Функция нейтрального проводника N – баланс потенциалов нескольких фаз и обеспечение потребителей током. Нулевой провод соединяется с глухозаземленной нейтралью трансформатора. В частных домах используется однофазный тип подключения с помощью нулевого и фазного кабеля. Для соединения нуля и земли используется заземляющий контур. Сама нейтраль маркируется изоляцией голубого цвета.

Проводник заземления обеспечивает безопасность электролинии при поломке. Его нормальный режим работы – проводной, при критических сбоях потенциал тока отводится в почву. Кабель РЕ маркируется при помощи сине-желтого цвета.

Нейтраль и защита в одном проводе обозначаются PEN, маркируются голубым цветом с желтыми и зелеными полосками на концах.

Схема подключения нейтрального провода и заземления

В МЭК-364, ГОСТе 30331.1-95 приводятся схемы подключения сети, нагрузка которой равняется 380 Вольт. По этой причине в квартире рекомендуется применять одну из систем.

Отдельная линия заземления TN-CS. Нейтральный щитки и защитные проводники домашнего коммутатора соединяются друг с другом. При наличии двух проводов PEN-кабель в определенной точке разделяется на нейтраль и защиту. Провода PE подкидываются к проводникам N. Защита схемы зависит от точки обрыва:

  • До места разделения. Фазный проводник и устройство зашиты отводят напряжение в нейтраль, а от нее – на провод защиты.
  • После места разделения. Опасное электричество не передается на корпус бытовой техники, а сразу передается на провод защиты.

В многоэтажках не всегда получается сделать подобную заземляющую линию.

Правила подключения нейтрали

Глава 1.7 ПУЭ подробно рассматривает электрическую безопасность при заземлении. В «Библии электрика» сказано:

  • для электрических установок напряжением более 1 кВ требуется глухозаземленная нейтраль, отводящая большие токи замыкания в грунт;
  • для оборудования до 1 В можно использовать изолированную или глухую нейтраль;
  • глухозаземленную нейтраль обязательно зануляют и присоединяют к линии заземления через трансформатор;
  • заземление и нейтраль выполняются при помощи медных (сечение 4 мм2), алюминиевых (сечение 6 мм2), изолированных (1,5 мм2 и 2,5 мм2) кабелей;
  • соединенные в одной скрутке кабели из меди должные иметь сечение 1 мм2, из алюминия – 2,5 мм2;
  • если от щитка квартиры или этажа протягивается 3 провода, используется защитная нейтраль;
  • если групповую сеть выполняют при помощи двух кабелей, нейтраль защиты протягивается от ближнего щита;
  • к нулю присоединяются все домашние приборы – чайник, кондиционер, компьютер, стиралка, кипятильник, холодильник.

При условии правильной схемы подключения защитный нулевой провод сможет предотвратить разрушение электросети и травмы в случаях короткого замыкания. Нейтраль равномерно распределяет нагрузку по всем линиям, этажам и квартирам многоэтажки. При ее первичном и повторном подключении стоит руководствоваться ПУЭ.

Ноль бьет током — в чем причины

Почему ноль бьет током: причины, откуда напряжение на нуле

Удар током можно получить, касаясь сразу к двум оголённым проводникам, к фазе и нулю. Также, поражение электрическим током происходит в том случае, когда есть контакт с землей и фазой.

Птицы не получают удар током сидя высоко на фазе по той причине, что отсутствует второй проводник, ноль либо земля. Однако случаются и такие ситуации, когда в розетке оказывается сразу две фазы. Проверить это достаточно просто, если взять в руки индикаторную отвертку.

Скажем так, что проблема достаточно распространённая. Ноль может бить током даже в тех случаях, когда индикатор ничего не показывает. Достаточно стоять голыми ногами на полу или прикасаться рукой к стене и нулю, чтобы получить внушительный разряд током.

Почему так происходит? Откуда напряжение на нуле? В чем могут быть проблемы? Давайте разбираться.

Почему ноль бьет током?

Недавно со мной произошёл интересный случай. В общем, занимался я монтажом карнизной планки и случайно попал при бурении стен в провод, который питал светодиодный фонарь на улице.

Провод задел буром аккуратно, так, что не повредил сразу два провода, а только изоляцию. Когда подключил прожектор то, заметил, что светодиоды светятся даже в том случае, если выключатель отключён.

Правда, перед этим, когда я подсоединял фонарь, меня немного ударил ноль, хотя автоматические выключатели я соответственно отключал перед этим. К чему это я? Да все к тому, что первой причиной того, что ноль бьет током, это повреждение проводки и утечка потенциала на ноль.

В таком случае на индикаторе будет гореть лампочка, поскольку на ноль попадает фазное напряжение.

Кроме этой причины, ноль может бить током и вследствие:

  • Обрыва нейтрали;
  • Из-за неправильно подключённой электропроводки в щитке;
  • Вследствие нарушения изоляции.

Рассмотрим более подробно данные проблемы, из-за которых ноль может бить током.

Обрыв нуля

Обрыв нейтрали является самой опасной проблемой, которая может произойти. В таком случае опасный потенциал оказывается сразу на двух проводниках.

Часто обрыв происходит вследствие отгорания нуля в квартире или щитке. Важно знать! Что для возникновения опасного напряжения на нуле в данном случае, достаточно чтобы в розетку был включён хоть один из потребителей.

Замыкание фазы на нуль

Часто происходит и так, что вследствие повреждения проводки и изоляции, фаза замыкается с нулём. Конечно же, в таком случае должен сработать автоматический выключатель.

Однако при чрезмерной длине проводов и неправильно подобранном номинале автомата такое часто не происходит, что ведёт к возникновению других, не менее опасных проблем. Поэтому чаще всего это все-таки повреждение фазного провода в стене, через который ток уходит на ноль и тот начинает бить током.

Перекос фаз

Также данная проблема, так или иначе, может быть связана с перекосом фаз. Перекос фаз — это неравномерное распределение нагрузок между тремя фазами, в результате чего на нуле появляется так называемый «уравнительный ток».

В том случае, если электропроводка старая, то разница между потенциалами на нулевой клемме может достигать 30 Вольт и более, что вполне достаточно для неприятного удара электрическим током.

Открытие: без нулевого потенциала никакой ток никуда течь не может

Различия фазного и нулевого провода

Фазный провод (фаза) предназначен для подачи электричества к потребителю.

Назначение нулевого провода (нейтрального или нуля) состоит в выравнивании асимметрии напряжений при разном значении нагрузки в фазах.

Он присоединён к нулевым точкам источника и потребителя при их соединении в «звезду».

Присоединение нейтрального провода (трехфазная четырехпроводная сеть) является возможным только в том случае, когда источник и нагрузка соединены в «звезду».

При соединении в «треугольник» необходимость в нём отпадает, так как линейное и фазное напряжения в фазах одинаковы.

Чтобы понять разницу между линейным и фазным напряжением, необходимо понимать, что в трехфазной трехпроводной цепи линейное (напряжение между двумя фазными проводами) в основном составляет 380 В, а фазное — напряжение между фазой и нулем — в √3 раз меньше приблизительно 220 В.

Нейтральный провод заслужил свое название тем, что при работе устройств ток в нём, при одинаковой нагрузке трёх фаз, равен нулю. Сопротивление его невелико. Поэтому при перегрузке одной или нескольких фаз, ток в нем быстро возрастет. В схеме освещения его наличие является обязательным условием. В ином случае не гарантируется равномерность освещения.

В зависимости от роли, нулевой провод может быть рабочим, защитным, совмещенным.

Рабочий обозначается латинской буквой N и выполняется голубым цветом в европейских странах. В некоторых других странах цвет может быть серым либо белым.

Защитный обозначается РЕ. Он предназначен для безопасности в случае попадания потенциала на корпус электроприбора. В нормальном режиме он обесточен, а при поломке является проводником, который отведет от электроприбора опасный потенциал в землю. Цвет этой жилы желто-зеленый.

В некоторых системах нулевой провод совмещен с защитным. В таком случае маркировка будет обозначена как PEN и окраска этой жилы будет синей с полосками на концах желто-зеленого цвета.

Электропроводка в доме: азы

Прячем провода. Проводка должна быть скрытой — монтироваться в штробах на стенах, в кабель-каналах, глухих (неразборных) коробах, стяжке пола и т.д. Уложенные открытым способом провода вызовут недовольство инспектора Энергонадзора, который будет принимать объект вашего загородного дома.

На фото:

Провода в стене прокладываются в гофротрубе, а потом зашпаклевываются.

Исключение могут составлять те случаи, когда скрытый монтаж по тем или иным причинам невозможен. Этот нюанс обязательно должен быть отражен в проектной документации.

Особенности нейтрального провода

Нулевой провод предотвращает нежелательные ситуации при аварийных режимах работы. Без его наличия в случае фазного короткого замыкания двух фаз напряжение в третьей фазе мгновенно возрастет в √3 раз. Это губительно скажется на оборудовании, которое питает этот источник. В случае наличия нуля в такой ситуации, напряжение не изменится.

При обрыве одной из фаз в трехфазной трехпроводной системе (без нуля), напряжение на двух оставшихся фазах уменьшится. Они окажутся соединенными последовательно, а при этом виде соединения напряжение распределяется между потребителями в зависимости от их сопротивления.

При обрыве одной из фаз в трехфазной четырёхпроводной системе, напряжение в двух оставшихся фазах своего значения не изменит.

Предохранители в нулевой провод не устанавливают из-за его большой значимости, потому как его обрыв является нежелательным

Так как большую часть времени работы электроустановок ток в этом проводе либо равен нулю, либо незначителен, нет смысла изготавливать его такого же сечения, как и сечение фазных. Чаще всего, из соображений экономии, он имеет меньшее сечение жилы, нежели сечение жил фаз в одной электроустановке. Если защитный провод не совмещен с нулевым, его сечение выполняют вдвое меньше, нежели, у фазного провода.

Укладка проводов в гофрошланг или трубу

Объединять между собой рабочий и защитный нулевой провода при однофазной разводке категорически запрещено. Вы лишь создаете видимость наличия системы защитного заземления. Однако на самом деле такой защиты здесь нет. Более того, если по каким-либо причинам фазовый и нулевой рабочий проводник поменяются местами, то защитный нулевой провод, как и корпуса всех подключенных к нему электроприборов, окажется под напряжением.

Запасаемся гофрой. При прокладывании проводов внутри стены или стяжки пола применяется специальный пластиковый гофрошланг или ПНД-труба (труба из полиэтилена низкого давления). Последняя является предпочтительной, так как ее гладкая внутренняя поверхность позволяет сравнительно легко заменить проводку в случае возникновения такой необходимости. При этом не потребуется заново долбить стену или вскрывать пол: провода просто вытягиваются из трубы, а на их место укладываются новые.

На фото:

Но это возможно только при сравнительно небольшой протяженности проводки — до нескольких десятков метров.

Классификация нейтралей линий электропередач

Назначение линий электропередач весьма разнообразно. А также разнообразна аппаратура для их защиты от утечек и коротких замыканий. В связи с этим нейтрали классифицируются на три вида:

  • глухозаземленная;
  • изолированная;
  • эффективно заземлённая.

Если линия электропередач напряжением от 0,38 кВ до 35 кВ имеет небольшую длину, а количество подключенных потребителей велико, то применяется глухозаземленная нейтраль. Потребители трехфазной нагрузки получают питание, благодаря трем фазам и нулю, а однофазной — одной из фаз и нулю.

При средней протяженности линий электропередач напряжением от 2 кВ до 35 кВ и небольшим количеством потребителей, подключенных к данной линии, находят применение изолированные нейтрали. Они широко используются для подключений трансформаторных подстанций в населённых пунктах, а также мощного электрооборудования в промышленности.

В сетях, с напряжением 110 кВ и выше, с большой протяженностью линий электропередач, применяется эффективно заземлённая нейтраль.

Другие причины нагрева

Провода и контакты, как уже было сказано, могут греться из-за возросшей нагрузки. Здесь есть три варианта проблемы:

  1. Токопроводящие жилы сильно тонкие, вы можете заметить нагрев, когда нагрузка на электропроводку возросла, например, зимой, когда вы начали использовать электрообогреватель. Тогда провода в щитке нужно заменить на более толстые.
  2. Нагрев ноля в шине. В этом случае самая вероятная проблема — плохой контакт винтовых зажимов шины. Чтобы обеспечить контакт сделать то же самое, что и с автоматом – зачистить и протянуть винт.
  3. По нулевому проводу течет «лишний ток». Это возможно, если ваш ноль использует сосед для хищения электроэнергии или из-за неумышленных ошибок при электромонтаже. Нужно проверить все соединения, возможно для этого придется раскрывать штробы в стенах или использовать устройство для поиска скрытых подключений.

Способы устранения проблемы

Если вы заметили греющий кабель, то необходимо знать, как можно решить данную проблему. Существует несколько популярных способов определения неисправности и её устранения.

Бытовая техника

Бытовая техника – это основная причина перегрева электрической сети. Чрезмерный нагрев проводников происходит из-за большой мощности потребителя и не рассчитанного на такую мощность кабеля. Но если причина не в этом, то простая последовательность поможет быстро найти и устранить неисправность.

  1. Проверьте, по всей ли длине кабель одинаково нагрет, или большая температура наблюдается в одном месте. Частая проблема – плохой электрический контакт вилки и кабеля, идущего к бытовому прибору.

Как устранить:

  • Необходимо выкрутить болты крепления корпуса вилки и снять верхнюю крышку.
  • Послабить контакты крепления проводов и достать провода.
  • Зачистить провода и места контактов – устранить все препятствия на пути прохождения электрического тока. Затем уложить провода на своё место и тщательно затянуть болты.
  • Окончательный этап – сборка крышки.
  1. Плохой контакт кабеля на входе бытового прибора. Если вилка цела, качество контактов на должном уровне, а провод греется с другой стороны, то следует проверить распредкоробку (или как её называют – клеммную коробку) бытового прибора.

Как устранить:

  • Выкрутить 4 болта крепления верхней крышки клеммной коробки и снять саму крышку. Под ней размещена клеммная колодка, в которой выполнен прямой контакт входного провода и провода бытового прибора.
  • Колодку следует открутить, достать провода и зачистить их, а также места крепления колодки. Для зачистки удобно использовать небольшой надфиль или мелкозернистую наждачную бумагу.
  • После зачистки, кабели установить в клеммную колодку, затянуть болтами и поставить на своё место крышку.
  1. Если кабель греется по всей длине, а розетка рассчитана на допустимый ток бытового прибора, то причина только одна — низкое качество кабеля. Такой проводник следует заменить.

Электропроводка

Излишнее нагревание проводов в домашней электропроводке сопровождается запахом горелой изоляции и приводит к неправильной работе бытовой техники. В некоторых случаях возможен даже выход из строя электрических приборов.

Последовательность определения неисправности:

  1. Основной проблемой может быть место подключения силовых кабелей в квартирном щитке. Обычно входной кабель крепят к медной шине, от которой пойдут провода дальше в квартиру. Ослабленный контакт на шине приводит к постепенному нагреву кабеля, также возможно искрение. Достаточно зачистить провод и немного подтянуть контакты.

Важно! Многожильные медные провода необходимо сначала опрессовать гильзой, после чего наконечник закрепить на шине с помощью болтового соединения.

    Ещё одна причина повышения температуры проводника – слабый контакт на автоматическом выключателе или его неисправность. Высокий номинал автомата приводит к постепенному нагреву кабелей, оплавлению изоляции и его возгоранию. Достаточно включить несколько мощных бытовых приборов, например, стиральную машину и бойлер, при неработающем автомате, и результат не заставит себя долго ждать.


Плохой контакт проводника и автоматического выключателя

  • Распределительная коробка – одно из самых небезопасных мест электромонтажа. Одна недожатая скрутка приводит к сгоревшей изоляции и возможному короткому замыканию. Поэтому все соединения в распределительных коробках лучше выполнять, используя медные клеммники.
  • Способы устранения проблемы

    Если вы заметили греющий кабель, то необходимо знать, как можно решить данную проблему. Существует несколько популярных способов определения неисправности и её устранения.

    Бытовая техника

    Бытовая техника – это основная причина перегрева электрической сети. Чрезмерный нагрев проводников происходит из-за большой мощности потребителя и не рассчитанного на такую мощность кабеля. Но если причина не в этом, то простая последовательность поможет быстро найти и устранить неисправность.

    1. Проверьте, по всей ли длине кабель одинаково нагрет, или большая температура наблюдается в одном месте. Частая проблема – плохой электрический контакт вилки и кабеля, идущего к бытовому прибору.

    Как устранить:

    • Необходимо выкрутить болты крепления корпуса вилки и снять верхнюю крышку.
    • Послабить контакты крепления проводов и достать провода.
    • Зачистить провода и места контактов – устранить все препятствия на пути прохождения электрического тока. Затем уложить провода на своё место и тщательно затянуть болты.
    • Окончательный этап – сборка крышки.
    1. Плохой контакт кабеля на входе бытового прибора. Если вилка цела, качество контактов на должном уровне, а провод греется с другой стороны, то следует проверить распредкоробку (или как её называют – клеммную коробку) бытового прибора.

    Обрыв нуля в трехфазной и однофазной сети

    Лампочка при обрыве нуля может гореть ярко, но недолго!

    Иногда обывателям приходится слышать эти страшные слова – “Обрыв нуля”. Для простого человека понятного мало, но связано это всегда с очень неприятными последствиями – поражение электрическим током, сгоревшая техника, и даже пожар в квартире.

    В этой статье я подробно рассмотрю, что такое обрыв нуля, как он происходит, какие последствия от него могут быть. И конечно, будет рассмотрена защита от обрыва нуля в трехфазной и однофазной сети.

    Для тех, кто не очень понимает, чем трехфазная сеть отличается от однофазной, очень рекомендую ознакомиться с этой статьёй.

    Также, при изучении этой статьи важно знать о том, как формируются системы заземления.

    Где бывает обрыв нуля

    Принципиально важно, что обрыв нуля может быть в трехфазной, а может быть в однофазной сетях.

    Там происходят совершенно разные процессы, подробно расскажу ниже. Если коротко, что при этом происходит:

    При обрыве нуля в трехфазной сети появляется перекос фаз, что может привести к тому, что напряжение в квартирной розетке возрастёт до 380 В! Для человека, если правильно выполнено заземление, такая авария не опасна. А вот для наших электроприборов – последствия могут быть очень печальными! А также и для нашего жилища, поскольку может произойти пожар.

    Местом обрыва нуля может быть этажный щиток, тогда в зоне риска находятся только квартиры на одной лестничной площадке. А может – вводное распределительное устройство (РУ) многоэтажного дома. Например, такое:

    Вводное распределительное устройство (РУ) в подвале многоэтажного дома – в плохом состоянии

    При обрыве нуля в однофазной сети последствия не такие печальные – напряжение в розетке будет нулевым, и электроприборы просто не будут работать. Однако вся электросеть (а при неправильно выполненном заземлении, и корпуса электроприборов!) будет находиться под потенциалом 220 В!

    Последствия обрыва нуля в трехфазной сети

    Расскажу случаи из жизни.

    1. Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
    2. Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.

    Болт нуля. Ржавый, периодически не контачит. Если его менять без отключения, 100% в подъезде погорит техника!

    Статья, как я менял там электрощиток – тут.

  • Меня вызывали в рекламно-издательскую фирму. По предварительным оценкам, ущерб более 100 тыс.руб., а всё из-за плохого контакта на нулевой шине:
  • Отгорание нуля от нулевой шины

    Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).

    Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…

    На месте этой трагедии я установил трехфазное реле напряжения Барьер, читайте статью по ссылке.

    Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.

    В этой статье подробно расскажу, почему такое бывает и как с этим бороться.

    Формирование однофазной и трехфазной сетей и обрыв нуля

    Как известно, мощные потребители (в данном случае – многоквартирные дома) питаются от трехфазной сети, в которой есть три фазы и ноль. Про эту систему я уже писал подробно в статье про отличия трехфазного питания от однофазного, вот картинка оттуда:

    Напряжения в трёхфазной системе

    Рассмотрим этот вопрос ещё раз, только с другой стороны.

    Вот как выглядит упрощенно схема подвода питания в этажный щиток:

    Система питания, без обрыва нуля. Резисторами обозначены условно три квартиры.

    Фазные провода L1, L2, L3, на которых присутствует напряжение 220В по отношению к нейтральному проводу N, обозначены красным цветом, поскольку они представляют опасность. Заземление РЕ показано внизу, его провод соединяется в распределительном устройстве на вводе в здание с нейтралью.

    Подробнее – ещё раз призываю ознакомиться с моей статьёй про системы заземления, ссылка в начале.

    К чему приводит отгорание нуля в трехфазной сети

    Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:

    Обрыв нуля в трехфазной сети

    Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.

    Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.

    Картинка в другом виде, возможно, так будет легче понять:

    Перекос фаз в результате обрыва нуля.

    Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как

    220B, обозначены как

    0…380B. Объясняю, почему.

    Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.

    Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.

    Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.

    У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.

    Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.

    Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.

    Обрыв нуля в однофазной сети

    Тут картина будет следующей:

    Обрыв нуля в однофазной сети

    Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.

    Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!

    Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:

    Плохой ноль. Пропадание нуля в квартире

    Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!

    Хорошо, кто виноват – мы поняли. Что делать?

    Как защититься от обрыва нуля?

    Самая лучшая защита от обрыва нуля в трехфазной сети – это реле напряжения, о котором я писал на блоге не раз. Вот две мои основные статьи – Про реле напряжения Барьер и реле напряжения ЕвроАвтоматика ФиФ.

    Из-за своей основной функции это реле называют также Реле обрыва нуля.

    Другой вариант – применение стабилизатора напряжения. В нем обязательно должна быть защита от пониженного и повышенного (до 380В) входного напряжения. А при невозможности стабилизировать напряжение он должен отключать квартиру, но оставаться исправным.

    Лучший вариант для защиты от обрыва нуля и вообще при нестабильном напряжении – использовать реле напряжения, а вслед за ним – стабилизатор.

    Как вариант дополнительной защиты при обрыве нуля может помочь УЗО (или диф.автомат). Только не так всё просто, подробности – в видео:

    На сегодня всё, подключайтесь к обсуждению, задавайте вопросы в комментариях!