Подбор электродвигателя по мощности и частоте вращения

Выбор электродвигателя в зависимости от мощности и частоты вращения

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Ни одно производство сегодня невозможно представить без использования оборудования с электродвигателем. Наиболее распространенными на данный момент являются трехфазные асинхронные электродвигатели, которые преобразуют энергию электротока в кинетическую. Они широко используются в системах вентиляции, электротранспорте, насосном оборудовании, промышленных станках и т. д. Действительно, список можно продолжать до бесконечности.

Асинхронные двигатели считаются самыми простыми с конструктивной точки зрения механизмами. Двигатели этого типа не имеют узла скользящего токосъема либо щеточно-коллекторного узла, что обеспечивает не только высокую надежность, но и минимальные расходы на эксплуатацию. Сегодня существует два вида двигателей такого типа: с короткозамкнутым и фазным роторами. Первый отличается простотой в эксплуатации и надежностью. К его минусам можно отнести повышенное (в 5–6 раз) потребление тока при пуске. Второй, с фазным ротором, лишен этого недостатка, но более сложен в эксплуатации.

Число питающих фаз определяет конструкцию двигателей. Так, выделяют однофазные и трехфазные асинхронные электродвигатели. Последний, при определенных условиях, может питаться и от однофазной сети, ведь двигатели такого типа применяются не только в промышленности, сельском хозяйстве или строительстве, но и в быту, в частном секторе и домашних мастерских. Однофазные без дополнительных приспособлений могут питаться от домашней электросети и приводить в движение стиральные машины, небольшие деревообрабатывающие станки, вентиляторы, электрические инструменты, насосы и т. д.

Прежде чем отправиться за покупкой электродвигателя, стоит определиться, на что обращать внимание. К основным критериям, которыми нужно руководствоваться при выборе, можно отнести мощность электродвигателя и частоту его вращения.

Главной особенностью таких механизмов считается значительно меньшая частота вращения ротора по сравнению с вращением магнитного поля. Это напрямую связано с количеством полюсов обмотки. Так, если в маркировке модели указывается 2P, то это говорит о наличии у двигателя двух полюсов, а номинальная частота вращения электродвигателя в таком случае составляет 3000 оборотов в минуту.

Увеличение количества полюсов увеличивает магнитное поле, за счет чего понижается скорость вращения ротора. Например, четыре полюса (4P) соответствуют 1500 об/мин, шесть полюсов (6P) — 1000 об/мин, восемь полюсов (8P) — 750 об/мин, двенадцать полюсов (12P) — 500 об/мин. Чтобы правильно подобрать электродвигатель, следует уточнить частоту вращения приводимого механизма — с тем условием, что частота вращения электродвигателя должна быть немного больше.

Большинство современных механизмов работают в режиме постоянной нагрузки. Это и компрессоры, и вентиляторы, и насосы, и другое оборудование, широко применяемое в быту и на производстве. Выбор электропривода также должен основываться и на потребляемой механизмом мощности. Общий расчет мощности электродвигателя осуществляется на основе следующей формулы:

Рм — значение мощности, потребляемой электродвигателем,

ηП — КПД передачи.

Важно помнить, что расчетное значение должно быть несколько меньше номинальной мощности приобретаемого электропривода.

Если вам предстоит выбрать привод для вентилятора, то определение мощности электродвигателя должно осуществляться по нижеприведенной формуле:

Kз — коэффициент запаса,

H — давление на выходе,

Q — производительность вентилятора,

ηп — КПД передачи,

ηв — КПД вентилятора.

Расчет мощности электродвигателя для конвейера следует осуществлять по нижеприведенной формуле:

Fн — значение усилия на набегающем участке,

v — скорость, с которой перемещается тяговой орган,

ηп — КПД привода.

Помните: правильный выбор электродвигателя позволит снизить количество потребляемой устройством энергии и существенно продлит срок его эксплуатации.

Онлайн расчет характеристик трехфазных электродвигателей

1. Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2. Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

3. Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

4. Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Как определить мощность и обороты электродвигателя без бирки?

При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току.
Заказать новый электродвигатель по телефону

Как определить мощность?

Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.

По габаритным размерам

Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР.

Какие размеры необходимо замерить:

  • Длина, ширина, высота корпуса
  • Расстояние от центра вала до пола
  • Длина и диаметр вала
  • Крепежные размеры по лапам (фланцу)
  • АИР63
  • АИР71
  • АИР80
  • АИР90
  • АИР100
  • АИР112
  • АИР132
  • АИР160
  • АИР180
  • АИР200
  • АИР225

По диаметру вала

Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.

Мощность
электродвигателя Р, кВт
Диаметр вала, мм Переход к модели
3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин
0,18 11 11 14 АИР56А2, АИР56В4, АИР63А6
0,25 14 19 АИР56В2, АИР63А4, АИР63В6, АИР71В8
0,37 14 19 22 АИР63А2, АИР63В4, АИР71А6, АИР80А8
0,55 19 АИР63В2, АИР71А4, АИР71В6, АИР80В8
0,75 19 22 24 АИР71А2, АИР71В4, АИР80А6, АИР90LA8
1,1 22 АИР71В2, АИР80А4, АИР80В6, АИР90LB8
1,5 22 24 28 АИР80А2, АИР80В4, АИР90L6, АИР100L8
2,2 24 28 32 АИР80В2, АИР90L4, АИР100L6, АИР112МА8
3 24 32 АИР90L2, АИР100S4, АИР112МА6, АИР112МВ8
4 28 28 38 АИР100S2, АИР100L4, АИР112МВ6, АИР132S8
5,5 32 38 АИР100L2, АИР112М4, АИР132S6, АИР132М8
7,5 32 38 48 АИР112M2, АИР132S4, АИР132М6, АИР160S8
11 38 48 АИР132M2, АИР132М4, АИР160S6, АИР160М8
15 42 48 55 АИР160S2, АИР160S4, АИР160М6, АИР180М8
18,5 55 60 АИР160M2, АИР160M4, АИР180М6, АИР200М8
22 48 55 60 АИР180S2, АИР180S4, АИР200М6, АИР200L8
30 65 АИР180M2, АИР180M4, АИР200L6, АИР225М8
37 55 60 65 75 АИР200M2, АИР200M4, АИР225М6, АИР250S8
45 75 75 АИР200L2, АИР200L4, АИР250S6, АИР250M8
55 65 80 АИР225M2, АИР225M4, АИР250M6, АИР280S8
75 65 75 80 АИР250S2, АИР250S4, АИР280S6, АИР280M8
90 90 АИР250М2, АИР250M4, АИР280M6, АИР315S8
110 70 80 90 АИР280S2, АИР280S4, АИР315S6, АИР315M8
132 100 АИР280M2, АИР280M4, АИР315M6, АИР355S8
160 75 90 100 АИР315S2, АИР315S4, АИР355S6
200 АИР315M2, АИР315M4, АИР355M6
250 85 100 АИР355S2, АИР355S4
315 АИР355M2, АИР355M4

По показанию счетчика

Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.

Для измерения мощности по показанию счетчика нужно:

  1. Подключить мотор и дать ему поработать в течении 6 минут.
  2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

Расчет мощности по току

Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

  • P – мощность электродвигателя;
  • U – напряжение;
  • Ia – ток 1 фазы;
  • Ib – 2 фазы;
  • Ic – 3 фазы.

Определение оборотов вала

Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:

  1. АИР 180 М2 – где 2 это 3000 оборотов.
  2. АИР 180 М4 – 4 это 1500 об. мин.
  3. АИР 180 М6 – 6 обозначает частоту вращения 1000 об/мин.
  4. АИР 180 М8 – 8 означает, что частота вращения выходного вала 750 оборотов.

Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.

У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности — 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.

Узнать частоту вращения с помощью амперметра

Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр — подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.

  • 2 полюса – 3000 об/мин
  • 4 полюса – 1500 об/мин
  • 6 полюса – 1000 об/мин
  • 8 полюса – 750 об/мин

Если не получилось узнать мощность и обороты

Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.

Выбор электродвигателя для промышленных применений

При выборе электродвигателя следует учитывать множество факторов, в том числе целевое назначение, требующиеся эксплуатационные и механические характеристики, а также предполагаемые внешние воздействия. Возможные варианты таковы: электродвигатель переменного тока, электродвигатель постоянного тока (рис. 1) или серводвигатель (шаговый электродвигатель). Конечный выбор в основном зависит от того, для какого промышленного изделия подбирается электродвигатель, и от наличия особых потребностей.

Рис. 1. Электродвигатели постоянного тока хорошо подходят для применения в изделиях с невысокой стоимостью, низкой частотой вращения ротора или постоянным крутящим моментом — например, таких, как этот ленточный транспортер

В зависимости от характера нагрузки это может быть электродвигатель с постоянной или переменной частотой вращения и мощностью. Крутящий момент и мощность определяются величиной нагрузки, необходимой частотой вращения, а также разгоном и торможением (особенно если они быстрые и/или частые). Кроме того, следует учитывать требования к регулированию частоты вращения и управлению положением ротора.

Типы нагрузок электродвигателей

Существует четыре типа нагрузок электродвигателей промышленной автоматики:

  • переменная мощность и постоянный крутящий момент;
  • переменный крутящий момент и постоянная мощность;
  • переменные мощность и крутящий момент;
  • управление положением ротора или регулирование крутящего момента.

К изделиям с переменной мощностью и постоянным крутящим моментом относятся транспортеры, краны и редукторные насосы. Крутящий момент у них постоянен, так как нагрузка не меняется. Требующаяся мощность может различаться в зависимости от типа изделия, поэтому хорошим выбором в этом случае будут электродвигатели постоянного тока с постоянной частотой вращения ротора.

Пример изделия с переменным крутящим моментом и постоянной мощностью — станок для перемотки бумаги. Скорость подачи материала постоянна, поэтому мощность не меняется. Нагрузка, однако, меняется по мере увеличения диаметра рулона. Для небольших систем такого рода хорошо подойдут электродвигатели постоянного тока или серводвигатели. Другой важный фактор в этом случае — энергия рекуперации, которую следует учитывать при выборе размера электродвигателя или метода регулирования мощности. В более крупных системах, возможно, целесообразнее будет использовать электродвигатели переменного тока с датчиками перемещений, регулирование с обратной связью и приводы, работающие в четырех квадрантах.

Для вентиляторов, центробежных насосов и мешалок требуются переменные мощность и крутящий момент. С увеличением частоты вращения ротора электродвигателя растет и мощность на нагрузке, а с нею требующиеся номинальная мощность и крутящий момент. При нагрузках такого типа начинает играть важную роль КПД двигателя. В подобных изделиях применяются электродвигатели переменного тока с инверторным управлением и частотно-регулируемые приводы.

В линейных приводах, которые должны обеспечивать точное перемещение во множество положений, требуется управление положением или регулирование крутящего момента ротора с малой погрешностью, а зачастую и обратная связь для проверки правильности положения. Для этих целей лучше всего подходят серводвигатели и шаговые двигатели, но наряду с ними часто применяются электродвигатели постоянного тока с обратной связью или электродвигатели переменного тока с инверторным управлением и датчиком перемещения, которые позволяют с малой погрешностью регулировать крутящий момент на металлургических и бумагоделательных линиях, а также в других аналогичных применениях.

Типы электродвигателей

Электродвигатели бывают двух основных разновидностей — переменного и постоянного тока, но они, в свою очередь, разделяются более чем на три десятка типов.

Несмотря на большое разнообразие, промышленные применения электродвигателей имеют между собой много общего, и под влиянием рыночных механизмов практический ассортимент типов электродвигателей в большинстве применений сузился. Шесть наиболее распространенных типов электродвигателей, которые можно использовать в подавляющем большинстве изделий, — это бесколлекторные и коллекторные электродвигатели постоянного тока, электродвигатели переменного тока с короткозамкнутым и фазным ротором, серводвигатели и шаговые электродвигатели. Прочие типы электродвигателей применяются только в изделиях специального назначения.

Три основных типа изделий по режиму работы электродвигателя

Три основных типа изделий по режиму работы электродвигателя — это изделия с постоянной частотой вращения, переменной частотой вращения и управлением положением (или регулированием крутящего момента) ротора. В различных изделиях промышленной автоматики требуются разные режимы, и набор вопросов, на который приходится отвечать при выборе электродвигателя, может также различаться (рис. 2).

Рис. 2. Асинхронные электродвигатели переменного тока часто выбирают для промышленных машин с вращательным движением рабочего органа

Например, если требующаяся максимальная частота вращения ротора меньше номинальной, может понадобиться редуктор. Возможно, для этой цели удастся подобрать более компактный электродвигатель, частота вращения ротора которого будет обеспечивать более высокий КПД. В Интернете есть большое количество информации о том, как выбирать электродвигатель по размеру, но пользователям необходимо принимать во внимание и другие факторы. Для расчета момента инерции нагрузки, крутящего момента и частоты вращения ротора требуется знать такие параметры, как полная масса и размер (радиус) нагрузки, а также коэффициент трения, потери на редукторе и цикл работы машины. Кроме того, во избежание перегрева электродвигателя необходимо учитывать изменение нагрузки, темп разгона или торможения и рабочий цикл изделия.

Определившись с типом и размером электродвигателя, пользователю нужно также учесть влияние внешних факторов и выбрать исполнение — например, открытое или в кожухе из нержавеющей стали для работы во влажной среде.

Выбор электродвигателя: три вопроса

Даже после того, как все эти решения приняты, пользователю необходимо ответить на следующие три вопроса, прежде чем сделать окончательный выбор.

Требуется ли постоянная частота вращения ротора?

В изделиях с постоянной частотой вращения ротора электродвигатель часто работает на приблизительно установленной частоте, а характеристики разгона и торможения роли практически не играют. В этом случае обычно применяется релейное управление с питанием непосредственно от сети. Цепи управления часто состоят из ответвления с предохранителем и контактором, устройства защиты от перегрузки при пуске и ручного регулятора электродвигателя или устройства плавного пуска.

Для изделий с постоянной частотой вращения ротора подходят электродвигатели переменного и постоянного тока. Электродвигатели постоянного тока обеспечивают номинальный крутящий момент при нулевой частоте вращения; этот тип электродвигателей очень популярен. Электродвигатели переменного тока — тоже хороший выбор, так как они характеризуются высоким коэффициентом мощности и нетребовательны в обслуживании. Серво­двигатель или шаговый двигатель с высокими эксплуатационными характеристиками был бы излишним для простого изделия.

Требуется ли переменная частота вращения ротора?

Изделия с переменной частотой вращения ротора обычно требуют изменения линейной скорости и частоты вращения с малой погрешностью, а также четко определенных характеристик разгона и ускорения. Уменьшение частоты вращения ротора в таких изделиях, как вентиляторы и центробежные насосы, часто позволяет повысить КПД за счет согласования мощности с нагрузкой вместо работы на максимальной частоте с пропорциональным регулированием или демпфированием. Это важно для конвейерных систем, например линий бутылочного розлива.

Электродвигатели как переменного, так и постоянного тока с приводами соответствующего типа эффективно работают в изделиях с переменной частотой вращения ротора. На протяжении длительного времени привод с электродвигателем постоянного тока был единственным вариантом для изделий с переменной частотой вращения ротора, и компоненты для этой комбинации хорошо отработаны и проверены временем. Даже сейчас электродвигатели постоянного тока широко применяются в маломощных (менее 1 л. с.) изделиях этого типа, а также оказываются полезными в изделиях с низкой частотой вращения ротора, так как обеспечивают номинальный крутящий момент на низкой частоте вращения и постоянный крутящий момент в широком диапазоне частот.

Слабой стороной электродвигателей постоянного тока может быть обслуживание, так как во многих из них для коммутации используются щетки, которые со временем изнашиваются от контакта с подвижными частями. Бесколлекторные электродвигатели постоянного тока свободны от этого недостатка, но дороже в приобретении, а их ассортимент — уже.

Избавлены от этой проблемы и асихронные электродвигатели переменного тока, а вкупе с частотно-регулируемым приводом (рис. 3) они позволяют получить более высокий КПД в изделиях мощностью более 1 л. с., таких как вентиляторы и насосы. Некоторые типы приводов предусматривают обратную связь по положению. Если этого требует характер изделия, можно дополнить электродвигатель датчиком перемещений и выбрать привод, использующий сигнал от этого датчика для обратной связи. Такая конфигурация может обеспечить такое же регулирование частоты вращения ротора, как в серводвигателе.

Рис. 3. Сочетание электродвигателя постоянного тока с частотно-регулируемым приводом широко применяется для повышения КПД и эффективно работает в разнообразных изделиях с переменной частой вращения ротора

Требуется ли управление положением ротора?

Управление положением ротора электродвигателя с малой погрешностью обеспечивается путем непрерывной проверки его положения в процессе вращения. В изделиях, где требуется, например, задавать положение линейного привода, можно применять шаговый электродвигатель с обратной связью или без таковой, а также серводвигатель со встроенной обратной связью.

Шаговый электродвигатель предназначен для перемещения в заданное положение на умеренной скорости с последующим сохранением этого положения. Шаговый электродвигатель без обратной связи по положению обеспечивает весьма точное управление положением ротора, если правильно выбрать его размер, а также перемещение на точно заданное число шагов (если только он не столкнется с изменением нагрузки, превышающим его возможности).

С ростом требуемой частоты вращения и динамических нагрузок шаговый привод без обратной связи может уже не обеспечить нужных характеристик системы, и тогда понадобится шаговый привод с обратной связью или сервопривод.

Система с обратной связью обеспечивает точное высокоскоростное перемещение по заданному профилю и регулирование положения ротора. Серводвигатель обеспечивает больший крутящий момент на высоких частотах вращения в сравнении с шаговым электродвигателем, а также эффективнее работает в изделиях, характеризующихся высокими динамическими нагрузками или сложным характером перемещения.

Для быстрого и/или резкого перемещения с малым перерегулированием по положению момент инерции нагрузки должен быть как можно лучше согласован с моментом инерции серводвигателя. Рассогласование в пропорции до 10:1 приемлемо в некоторых применениях, но оптимальным является согласование 1:1.

Уменьшение частоты вращения посредством редуктора — оптимальный способ решить проблему рассогласования моментов инерции, поскольку момент инерции нагрузки обратно пропорционален квадрату передаточного отношения редуктора. При этом в расчетах необходимо учитывать момент инерции редуктора.

Знание особенностей изделия и электродвигателя

Производители предлагают широкий ассортимент электродвигателей для промышленных применений. Шаговые электродвигатели, серводвигатели, электродвигатели переменного и постоянного тока пригодны для использования в большинстве типов изделий промышленной автоматики, но оптимальный выбор электродвигателя зависит от характера изделия. Пользователям следует выбирать электродвигатель для своего изделия, учитывая, какой требуется режим работы — постоянная частота вращения, переменная частота вращения или управление положением ротора, — и в тесном взаимодействии с поставщиками электродвигателя и привода.

Как подобрать частотный преобразователь

Данные, собираемые при посещении сайта

Персональные данные

Персональные данные при посещении сайта передаются пользователем добровольно, к ним могут относиться: имя, фамилия, отчество, номера телефонов, адреса электронной почты, адреса для доставки товаров или оказания услуг, реквизиты компании, которую представляет пользователь, должность в компании, которую представляет пользователь, аккаунты в социальных сетях; поля форм могут запрашивать и иные данные.

Эти данные собираются в целях оказания услуг или продажи товаров, связи с пользователем или иной активности пользователя на сайте, а также, чтобы отправлять пользователям информацию, которую они согласились получать.

Мы не проверяем достоверность оставляемых данных, однако не гарантируем качественного исполнения заказов или обратной связи с нами при некорректных данных.

Данные собираются имеющимися на сайте формами для заполнения (например, регистрации, оформления заказа, подписки, оставления отзыва, обратной связи и иными).

Формы, установленные на сайте, могут передавать данные как напрямую на сайт, так и на сайты сторонних организаций (скрипты сервисов сторонних организаций).

Также данные могут собираться через технологию cookies (куки) как непосредственно сайтом, так и скриптами сервисов сторонних организаций. Эти данные собираются автоматически, отправку этих данных можно запретить, отключив cookies (куки) в браузере, в котором открывается сайт.

Не персональные данные

Кроме персональных данных при посещении сайта собираются не персональные данные, их сбор происходит автоматически веб-сервером, на котором расположен сайт, средствами CMS (системы управления сайтом), скриптами сторонних организаций, установленными на сайте. К данным, собираемым автоматически, относятся: IP адрес и страна его регистрации, имя домена, с которого вы к нам пришли, переходы посетителей с одной страницы сайта на другую, информация, которую ваш браузер предоставляет добровольно при посещении сайта, cookies (куки), фиксируются посещения, иные данные, собираемые счетчиками аналитики сторонних организаций, установленными на сайте.

Эти данные носят неперсонифицированный характер и направлены на улучшение обслуживания клиентов, улучшения удобства использования сайта, анализа посещаемости.

Как подобрать частотный преобразователь

Использование частотных преобразователей для управления электродвигателями в различных системах – эффективное и современное решение, позволяющее получить стабильность работы и простой способ управления. Конечно, это возможно только в том случае, если подбор частотного преобразователя

Что нужно сделать вначале

Очевидно, что перед тем, как подобрать преобразователь частоты, у вас должна быть полностью разработана система, которой он будет управлять. То есть, перед выбором вы должны знать:

  • Какой двигатель будет установлен в системе;
  • Мощность двигателя;
  • Особенности пуска и торможения;
  • Характер нагрузки на двигатель;
  • Необходимость подключения дополнительных датчиков и цепей дистанционного управления.

По большому счету, когда известно назначение системы, например, управление лифтами, насосом или вентиляцией, можно значительно сузить круг выбора, рассматривая модели преобразователей, которые оптимизированы для работы с таким характером нагрузки. Однако даже в этом случае выбор будет достаточно велик.

Критерии выбора частотника

Чтобы подобрать оптимальный частотный преобразователь для решения определенной технической задачи, следует рассмотреть такие параметры:

  • Питающее входное напряжение и число фаз. Они должны соответствовать значениям, указанным в паспорте частотника.
  • Мощность двигателя и его номинальный ток. У частотника эти характеристики должны быть примерно на 10% выше. Больший запас по мощности делать не желательно, если не планируется модернизация. Во-первых, такой запас обойдется значительно дороже, во-вторых, может быть ухудшена точность управления двигателем.
  • Характер нагрузки. Если нагрузка предполагает постоянную работу двигателя на пиковых мощностях, например, подъемники, прессовое оборудование, следует обратить внимание на длительность пиковой нагрузки и ее допустимое значение.
  • Возможность поддерживать работу в требуемом диапазоне частот.
  • Желаемый принцип работы системы торможения двигателя. Например, в системах большой мощности с частыми циклами запуска-остановки имеет смысл рассмотреть покупку более дорого частотника с рекуперативным торможением. Первичные затраты на оборудование окупятся экономией электроэнергии.
  • Необходимость подключения дополнительных датчиков. Например, в насосных системах наличие обратной связи от датчика давления позволит увеличить точность и экономичность работы.
  • Поддержка протоколов и наличия портов удаленного управления и мониторинга. Соблюдение этих требований важно при централизованном или автоматизированном управлении.
  • Условия монтажа и эксплуатации должны быть учтены с учетом параметров окружающей среды помещения, в котором будет установлен частотный преобразователь.

Пользуясь этими правилами, которые рекомендуют, как правильно выбрать частотный преобразователь, вы сможете подобрать оптимальную модель преобразователя по критериям стоимости и функциональности. Также вы можете обратиться за помощью в выборе к специалистам нашей компании.

вернуться в блог

Предоставление данных третьим лицам

Мы не раскрываем личную информацию пользователей компаниям, организациям и частным лицам, не связанным с нами. Исключение составляют случаи, перечисленные ниже.

Данные пользователей в общем доступе

Персональные данные пользователя могут публиковаться в общем доступе в соответствии с функционалом сайта, например, при оставлении отзывов, может публиковаться указанное пользователем имя, такая активность на сайте является добровольной, и пользователь своими действиями дает согласие на такую публикацию.

По требованию закона

Информация может быть раскрыта в целях воспрепятствования мошенничеству или иным противоправным действиям; по требованию законодательства и в иных случаях, предусмотренных законом.

Для оказания услуг, выполнения обязательств

Пользователь соглашается с тем, что персональная информация может быть передана третьим лицам в целях оказания заказанных на сайте услуг, выполнении иных обязательств перед пользователем. К таким лицам, например, относятся курьерская служба, почтовые службы, службы грузоперевозок и иные.

Сервисам сторонних организаций, установленным на сайте

На сайте могут быть установлены формы, собирающие персональную информацию других организаций, в этом случае сбор, хранение и защита персональной информации пользователя осуществляется сторонними организациями в соответствии с их политикой конфиденциальности.

Сбор, хранение и защита полученной от сторонней организации информации осуществляется в соответствии с настоящей политикой конфиденциальности.

Подбор электродвигателя по параметрам на шильде

На каждом модели электродвигателя есть шильдик или металлическая пластина, на которой указывается модель мотора и все его основные технические характеристики.

Новые модели электродвигателей выпускаются с меньшими габаритами и размерами устройств соединения с приводом. Поэтому аналог старому электродвигателю подобраться не удастся. Придется мудрить при установке электродвигателя: либо установить переходную пластину для крепления болтами мотора к станине, либо необходимо будет расточить отверстие полумуфты под размер вала и шпоночный паз.

Параметры подбора электродвигателя:

  1. Серия электродвигателя, например АО, АИР, АМУ, АОД, и т. д. Это очень важный параметр, потому что каждая серия обладает своими индивидуальными характеристиками: режим работы и запуска, с повышенным скольжением или пусковым моментом, наличие переключения скоростей, электрического тормоза и т. п. Поэтому для безотказной и эффективной работы выбирайте двигатель из такой же серии или аналогичной по характеристикам.
  2. Варианты монтажа на лапы, большой или малый фланец, с одним или двумя концами вала и т. п.
  3. Выбор по мощности. Номинальная мощность электродвигателя- Pном в кВт указывается на шильдике, только не путайте ее с мощностью передаваемой на вал. Очень важно подбирать электродвигатель точно по той мощности, которая необходима, избегая ее занижения или преувеличения.
  4. Рабочее напряжение. Мотор может быть рассчитан только на работу от одного напряжения величиной 220 В или 380 В, или на двойное- по схеме звезда-треугольник 220/380 Вольт или 380/660 В.
  5. Частота вращения вала, которая может быть максимум 3000 оборотов в минуту, 1400, 900 и т. д. Очень важный параметр, потому что частота вращения вала электродвигателя должна точно соответствовать необходимой величине для приводимых им устройств.
  6. Степень защиты от внешних воздействий, указывающая на защищенность электромотора от пыли, струй воды и т. п.


Например, с IP54 можно использовать электродвигатель во влажных помещениях и на улице под дождем, но нет защиты от струй воды.

  • Варианты климатического исполнения— для Украины, Республики Беларусь и средней полосы России, как правило применяется УХЛ — холодный климат с рабочими температурами от +40 до -60 градусов С. Есть еще У — умеренный климат (+40… -45 гр. С) , Т — тропический климат (+50… -10 гр. С) и ОМ — морской климат (+45… -40 гр. С).
  • Второстепенные параметры, есть модели 2ух, 3х, 4х скоростные, с повышенным скольжением или пусковым моментом и т. п. Как правило, необходимы для работы на производстве.
  • Я не выделял отдельно параметры КПД- коэффициент полезного действия и cos φ — коэффициент мощности. При выборе они не имеют значения, потому что у современных моделей эти характеристики будут все равно лучше.

    Изменения в политике конфиденциальности

    Мы имеем право по своему усмотрению обновлять данную политику конфиденциальности в любое время. В этом случае мы опубликуем уведомление на главной странице нашего сайта. Мы рекомендуем пользователям регулярно проверять эту страницу для того, чтобы быть в курсе любых изменений о том, как мы защищаем информацию пользователях, которую мы собираем. Используя сайт, вы соглашаетесь с принятием на себя ответственности за периодическое ознакомление с политикой конфиденциальности и изменениями в ней.

    Подбор электродвигателя по параметрам, если нет шильдика

    При отсутствии таблички или шильды с техническими параметрами на электродвигателе, подобрать замену гораздо сложнее. Сразу необходимо будет узнать рабочее напряжение, мощность и частоту (количество оборотов) вращения вала, а также необходимость для электродвигателя — в увеличенном пусковом моменте, повышенном скольжении, нескольких скоростях и т. п.

    Далее необходимо измерить основные размеры:

    1. Диаметр вала и его высоту (размер от его ).
    2. Вылет вала или длину его выступающей части.
    3. Расстояния крепежных отверстий и размер от вала до центра первого отверстия на лапе.
    4. При наличии фланца. Необходимо измерить его диаметр и расстояния по центрам крепежных отверстий.


    После того как снимете все размеры и узнаете технические характеристики электродвигателя- переходите к подбору по справочнику. Электронную версию Вы найдете здесь.

    Похожие материалы:

    • Устройство электродвигателя и принцип …
    • Как определить мощность и ток …
    • Ремонт электродвигателя своими руками
    • Cхема и принцип работы электродвигателя …