Частотное регулирование насосов принцип действия

Частотный преобразователь для насоса – принцип работы и правила монтажа

Частотный преобразователь для насоса (инвертор) осуществляет частотное регулирование насосов, стабилизирует, автоматизирует и регулирует их работу, предоставляет возможность изменять частоту напряжения для увеличения эффективности и экономичности работы насосного оборудования для систем водоснабжения, а также увеличения его износостойкости.

Установлено, что электроводонасос с частотным преобразователем может экономить до 50% электроэнергии, а работой его намного удобнее управлять.

Что собой представляют частотные преобразователи

Часто производители водонасосов еще на этапе сборки их конструкций включают в них частотные преобразователи. Например, как в насосах Грундфос, которые пользуются высоким спросом. В более дорогих моделях в качестве преобразователей используются микропроцессоры, тем не менее, не во всех насосах предусматриваются преобразователи частоты и может потребоваться их отдельное приобретение и установка.

Таким образом вы можете выбрать насос в котором уже есть частотный преобразователь для насоса и всеми опциями, так и приобретать их отдельно с возможностью подключением дополнительных возможностей, зависимо от меняющихся потребностей.

Инверторы для насосов представляют собой сочетание асинхронного двигателя с фазным ротором, который работает в режиме генератора-преобразователя. Им управляет микропроцессор, оснащенный большим функционалом, а сам частотник, несмотря на достаточно сложную конструкцию, имеет простой интерфейс, благодаря которому им сможет легко управлять обычный пользователь.

Частотный регулятор на водяной насос устанавливается на электродвигателе, в месте расположения штатной клемной коробки или на стене, в специальном шкафу. Сами инверторы отличаются по мощности и весу и характеризуются наличием надежной защиты от перегрузки.

Почему используют частотники

Есть несколько причин, почему рекомендуют использовать частотник для насосов:

  1. Он защищает электродвигатель от токовых перегрузок и скачков напряжения.
  2. Он нивелирует возникновение разрушительных водяных ударов, сглаживая пусковые моменты двигателей.
  3. Он защищает насос от работы в холостую.
  4. Он на 30-50% увеличивает экономичность функционирования насоса, а также снижает количество его поломок.

Все частотные преобразователи оснащены специальным датчиком давления, который автоматически включает или выключает насос, при этом контролируя, чтобы заданное пользователем давление в системе оставалось неизменным.

Это предоставляет возможность свободно перекачивать независимо от ее температуры и даже качать агрессивные жидкости.

Комплектации частотных преобразователей

На рынке представлено огромное количество моделей насосов с частотным регулированием на любой выбор с различным функционалом. Среди насосов с частотным преобразователем есть оборудование, оснащенное сразу всем необходимым для того, чтобы обеспечить безопасную и экономичную работу вашему насосу, а также те, которые нуждаются в дополнительной комплектации.

В первом случае вы получите более дорогую, универсальную и надежную конструкцию, а во втором – сам частотник будет недорогим, за то каждая приобретаемая опция будет стоить несколько дороже, а ее подключение и настройка должны будут производиться своими руками.

Как выбрать преобразователь

На что следует обратить внимание при подборе частотных преобразователей на свой насос:

  1. Мощность оборудования – от этого зависит частота вращения насоса, регулируемая преобразователем.
  2. Диапазон входного напряжения – уровень напряжения в сети, при котором частотник сохраняет свою функциональность. В этом случае стоит произвести расчет, какое напряжение может возникнуть в сети. Этот показатель позволит «пережить» преобразователю колебания напряжения в сети, полностью сохранив свою работоспособность.
  3. Диапазон изменений частоты – убедитесь, что выбираемое оборудование выдает именно ту частоту, которую смогут поддерживать механизм насоса и его двигатель.
  4. Количество управляющих входов – для ввода различных команд, которые могут потребоваться при управлении насосом (старт, реверс, стоп, аварийная остановка и др.). Входы устанавливаются самим пользователем. Если вы стремитесь построить сложную систему, в таком случае, чем больше входов, тем лучше, для бытого применения подойдет частотник с небольшим количеством входов.
  5. Количество выходных сигналов – потребуются для аналогового управления преобразователем.
  6. Метод управления – как осуществляется оперативное управление преобразователем (через входы управления с автономного или локального пульта, от ПК или контролера, переключаемое или комбинированное управление).

Учитывая представленные характеристики, вы сможете подобрать такое оборудование, которое подойдет именно для вашего насоса и для ваших нужд.

SIRIO ENTRY 230 частотный преобразователь для насосов (видео)

Что нужно знать, чтобы установить частотный преобразователь для насоса

Устанавливают частотники в специальный шкаф управления насосами (шун) с частотным преобразователем или в любое другое место, где будут соблюдены основные требования для их нормального функционирования.

Чтобы была произведена правильная установка частотного преобразователя, необходимо учесть следующие нюансы:

  • В месте расположения частотника необходимо обеспечить хорошую вентиляцию.
  • Температура окружающей среды не должна быть ниже 10˚C и выше 45˚C.
  • Должна соблюдаться относительная влажность менее 90%, на установленное оборудование не должна попадать вода.
  • В непосредственной близости с частотным преобразователем должны отсутствовать пожароопасные и легковоспламеняющиеся материалы и жидкости.
  • На устройство не должны попадать прямые солнечные лучи.
  • Нельзя допускать наличие поблизости капель масла, пыли или стальной стружки.
  • Размещать его необходимо в месте, с полностью отсутствующими вибрациями.
  • Установка должна производиться на устойчивую поверхность без наклонов.
  • Нельзя устанавливать оборудование в зоне электромагнитных помех.

Также учтите, что чем выше преобразователь будет установлен над уровнем моря, тем больше будет его номинальная мощность.

Используя представленные рекомендации, вы сможете подобрать такой частотный преобразователь для насосов, который отлично подойдет для организации работы вашего водонасосного оборудования. Различные модели прекрасно подходят как для оборудования скважинных, так и для фонтанных и других компрессоров, которые используются в жилых и частных домах.

Для чего необходимо частотное регулирование насосов

Насосные станции представляют собой систему, работающую на переменных нагрузках, возникающих в процессе водопотребления. В зависимости от уровня водопотребления, нагрузки могут значительно падать или возрастать. В этом случае, такое условия как регулирование работы насосов является обязательным, так как пониженные расходы воды могут привести к нарастающему давлению в системе, что может привести к таким последствиям как:

  • потеря энергии;
  • потеря жидкости на негерметичных стыках;
  • повышение расходов на эксплуатацию;
  • повышение износа оборудования.

Вследствие этого, вопрос о регулировании стал неотъемлемой частью использования насосов. На сегодняшний день преобразователи частоты стали наиболее приемлемым вариантом из всех когда-либо возникавших, способных за счёт регулирования числа оборотов вала электропривода, регулировать скорость его вращения. Вследствие этого, выполняется обеспечение системы требуемым напором с оптимизацией параметров минимального расхода и оптимальных значений КПД соответственно. Таким образом, данный метод позволяет поддерживать в норме общее давление гидросистемы, уменьшая обороты в момент малых расходов и повышая при увеличении потребления ресурсов, например, воды в коммунальных службах при подаче населению. В целом же, использование частотников не ограничивается на указанных и промышленных насосах. Они вполне смогут обеспечить работу бытовых насосов, используемых для водяных скважин, для насосов фекального типа и прочих, помогая сэкономить как минимум 30% электроэнергии, повышая окупаемость самого преобразователя.

Кроме самих преобразователей, к числу оборудования для выполнения частотного регулирования также можно отнести:

  • Трансформаторы силовые, служащие как звено согласования параметров напряжения, между источником питания и инвертора с двигателем;
  • Установленные у входа и выхода частотника фильтры;
  • Высоковольтные коммуникации и защитные устройства силовых цепей.

Эффективность применения преобразователей для насосов

Суть работы частотного преобразователя основывается на плавном бесступенчатом регулировании скорости вращения вала двигателя, передающего нагрузку на связанные с ним механизмы. Наиболее часто использую преобразователи для однофазных двигателей, применяемых в насосах и работающих по принципу переменного вращающего момента. Кроме того, современные частотные устройства способны не только выполнять функцию управления, но и ряд других задач, в том числе и защитных, влияющих на эффективность работы насосного оборудования:

  • защищают насосы и электродвигатели от перегрузок;
  • выполняют защиту от перепадов напряжения;
  • предотвращают возможность возникновения коротких замыканий;
  • предотвращают перегрев двигателя насосного устройства;
  • предотвращают возникновение гидроударов в системе;
  • одинаково эффективное управление при использовании нескольких насосов;
  • максимально облегчают эксплуатацию насосных станций, проведение ремонтных операций, исключая существенные потери в водоснабжении.

Спроектированные на профессиональном уровне, использующие множество функций автоматической диагностики и определения параметров, а так же чётко построенный алгоритм работы, использование устройств для частотного регулирования насосами обрело множество выгодных решений, среди которых:

  • Автоматическое включение/отключение насосов и насосных станций по сигналу датчиков давления;
  • Автоподдержание давления при меняющемся расходе рабочего вещества;
  • Защита от включения насоса при отсутствии воды или закрытой задвижке;
  • Даёт возможность перекачивать различные типы жидкостей, в том числе и по температурному значению;
  • Выполняет сглаживание пусковых моментов, защищая от воздействия резких гидропотоков;
  • Способствует снижению энергозатрат на эксплуатацию систем;
  • Снижают потребление электрической энергии при любых допустимых условиях мощностной эксплуатации двигателя;
  • Возможность регулировать работу двигателей и, соответственно насосов на расстоянии, благодаря съёмному пульту управления и прочие.

Примеры использования насосов работающих с частотными преобразователями

  1. Системы насосов подъёма, задачей которых является поддержание в пределах заданного уровня поддерживать давление в системах водоотвода и водоснабжения. При расходе жидкости на низком уровне, частотные устройства переводят насосный двигатель в режим ожидания, проведя предварительно подкачку (нагнетание) давления, после чрезмерного упадка которого он снова запускается.
  2. Система орошения. Используемые в сельском, садовом и прочих хозяйствах, поддерживают постоянную стабильность подачи воды, при этом, контролируя время и дату запуска с помощью встроенной панели интеллектуального управления. Плавный старт и заполнение труб на низкой скорости позволяют сохранить от разрушения избыточным давлением всю систему полива.
  3. Система поддержки заданных уровней резервуаров. Используемые для промышленных и прочих целей резервуары сбора воды имеют ограничения, контроль за не превышение которых ложится на систему вправления. Так же, она регулирует чистоту самого насоса, запуская функцию очистки крыльчаток от различных отложений, отягощающих уровень работы устройства.

Конечно же, список сфер и условий использования далеко не полон, что говорит о высокой эффективности и крайней необходимости использования частотного регулирования насосов с помощью преобразователей и прочего комплексного оборудования в различных сферах деятельности человека, как бытового, так и промышленного, производственного и прочего характера.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Основы применения частотных преобразователей в насосных установках

В данной статье мы попытаемся разобраться с основами применения преобразователей частоты (частотно-регулируемого привода) в насосных установках.

Насосы и насосные установки

Определимся для начала с основными понятиями и принципами.

Насосная установка – это совокупность насосных агрегатов, трубопроводов, запорно-регулирующей арматуры, КИП, устройств управления и защиты.

Насосная установка характеризуется двумя основными параметрами: подача и напор.

Подача – это объем жидкости который способна перекачать насосная станция за единицу времени, измеряется в куб. метр / час.

Напор – это энергия необходимая для подъема жидкости на заданную высоту с преодолением сил трения в трубопроводной арматуре, измеряется в метрах. Напор и давление связаны между собой соотношением:

где H – напор; P – давление насоса; ρ – плотность жидкости; g – ускорение свободного падения.

Насосные установки по назначение делятся на:

  • Водопроводные (ВНС) – это насосные станции которые подают воду от водоема до очистных сооружений (ВНС I подъема) и от очистных сооружений в распределительную сеть трубопроводов (ВНС II подъема). Так же существуют промежуточные повысительные насосные станции, в случае когда необходимо создать достаточное давление для поднятия воды на требуемую высоту.
  • Канализационные (КНС) – перекачивают сточные воды к месту очистки.
  • Теплофикационные – предназначены для подачи горячей воды в системе горячего водоснабжения и отопления.
  • Технологические – насосные станции для перекачки различных жидкостей в технологических процессах.

По виду рабочей камеры насосы делятся на динамические и объемные, те в свою очередь на лопастные, электромагнитные, трения, крыльчатые, роторные, возвратно-поступательные и другие.

В наше время чаще всего используются лопастные насосы: центробежные и осевые.

В основе работы центробежного насоса лежит действие центробежной силы на перекачиваемую жидкость. При вращении рабочего колеса жидкость приходит во вращение и под действием центробежной силы перемещается от центра колеса на периферию, а далее в напорную трубу.

Жидкость в осевом насосе перемещается вдоль оси насоса за счет воздействия лопастей рабочего колеса и создания разности давления под и над лопастью. По принципу работы он схож с пропеллером самолета или бытовым вентилятором.

Основной характеристикой насоса является зависимость напора от подачи, которая называется напорно-расходной.

В качестве электропривода насосов в основном используются асинхронные двигатели с короткозамкнутым ротором и синхронные двигатели переменного тока. Реже используются асинхронные двигатели с фазным ротором.

В статье мы рассмотрим работу насосных установок на примере центробежных насосов.

Режимы работы

Теперь рассмотрим режимы работы насосных установок и определимся от чего зависит тот или иной режим.

Режим работы насосных установок зависит либо от изменения расхода у потребителей, либо от притока сточной жидкости, в случае с канализационными насосными станциями.

Режимы водопотребления характеризуются временными графиками и бывают суточными, недельными, месячными и т.д.

Подача насосных установок, работающих без промежуточных емкостей, должна быть равна потреблению. При увеличении потребления подачу необходимо увеличивать, при этом также увеличиваются потери напора в трубопроводах. Поэтому следует также увеличивать давление, которое развивают насосные установки. При уменьшении водопотребления следует снизить подачу и давление.

Ранее для регулирования характеристик насосных установок использовалось изменение числа работающих насосов и степени открытия задвижек. Теперь с появлением частотных преобразователей регулируется частота вращения рабочих колес насосов.

При работе с промежуточной (аккумулирующей) емкостью подача насосной установки отличается от потребления. В этом случае, если нет частотных преобразователей, насосные агрегаты включаются, когда уровень воды достиг минимальной отметки, и отключаются, когда уровень достигает верхней заданной отметки, и так далее по циклу.Таких циклов в сутки может быть до 50, а в некоторых случаях и до 100. Такое количество пусков, особенно для двигателей большой мощности, негативно сказывается на состоянии электроприводов.

Изменение характеристик центробежных насосов можно осуществить двумя способами: изменением степени открытия задвижки на напорном трубопроводе и изменением частоты вращения рабочего колеса насоса.

  • регулирование задвижкой (дросселирование) – уменьшая степень открытия задвижки, мы уменьшаем подачу насоса, напор перед задвижкой увеличивается, а после задвижки уменьшается из-за потери напора на запорной арматуре. Открывая задвижку, мы увеличиваем подачу, напор который создает насос уменьшается, а напор за задвижкой увеличивается. Этот способ крайне неэкономичный, так как большое количество энергии теряется на сопротивлении запорной арматуры.
  • регулирование изменением частоты вращения насосов – при таком регулировании при снижении частоты вращения, кривая напорно-расходной характеристики насоса перемещается вниз. Подача, напор насоса и напор в трубопроводе одновременно уменьшаются. При увеличении частоты вращения насоса, увеличивается подача и напор насоса, и напор в сети.

Данный способ регулирования является более экономичным, но требует применения частотных преобразователей.

При регулировании с помощью частотных преобразователей снижение энергопотребления равно потерям, которые обусловлены повышением напоров при работе насосов с постоянной частотой вращения.

Особенности работы насосов при изменении частоты вращения

При регулировании насоса изменением частоты вращения обеспечивается перемещение рабочей точки насоса по кривой характеристики трубопровода, а не насоса, как в случае с дросселированием. При этом избыточные напоры отсутствуют и обеспечивается минимальное энергопотребление.

Регулирование частоты вращения насосов в насосной установке дает возможность оптимально распределить нагрузки между насосами, выровнять их КПД и удерживать в зоне оптимальных КПД их рабочие точки, снизив затраты энергии к минимальным значениям.

При изменении частоты вращения насоса пропорционально изменяются и все его характеристики. Но при низкой частоте вращения порядка 10-15% от номинальной происходит нарушение зависимости между подачей и напором насоса. Его характеристики теперь нельзя представить в виде параболической кривой, а только россыпью точек. Потому диапазон регулирования частоты вращения насоса не должен выходить за предельную нижнюю границу.

Так же при работе насосов с пониженной частотой вращения могут возникнуть такие опасные явления как кавитация и помпаж.

Кавитация – это явление при котором поток жидкости перестает быть сплошным, сопровождающееся образованием пузырьков газов и паров жидкостей. Кавитация опасна дополнительными потерями электроэнергии и разрушением рабочих элементов насоса. Она может возникнуть в случае если существующий напор на всасывающем трубопроводе меньше требуемого. При снижении частоты вращения насоса, также в большую сторону увеличивается требуемое значение напора на всасывающем трубопроводе, что следует учитывать во избежание возникновения кавитации.

Помпаж – может возникнуть в насосах с неустойчивыми (лабильными) напорно-расходными характеристиками при пересечении лабильной характеристики насоса с характеристикой трубопровода в двух точках. В этом случае насос начинает попеременно работать с параметрами двух точек и вся система становится неустойчивой. Происходят гидравлические удары, резкое закрытие обратных клапанов, частое изменение потребляемой мощности и нестационарные режимы работы сети электроснабжения. Работа в таком режиме недопустима !

При оснащении насосных установок частотно-регулируемым приводом следует не забывать о том, что:

  1. Помимо экономии электроэнергии необходимо обеспечить нормальный режим работы насосного агрегата;
  2. Следует анализировать прогнозируемые режимы работы насосов на низкой частоте вращения и учитывать это при создании автоматизированных систем.

Рекомендации по выбору частотных преобразователей для насосов водоснабжения и отопления

Насосы, используемые в системах автономного водоснабжения и отопления, являются производительным, но при этом достаточно затратным в эксплуатационном плане оборудованием из-за высокого уровня энергопотребления. Уменьшить затраты и существенно продлить срок эксплуатации насоса можно укомплектовав его частотным преобразователем, о котором мы поговорим в данной статье.

Вы узнаете, зачем нужен и какие функции выполняет частотный преобразователь. Будет рассмотрен принцип работы таких устройство, их разновидности, технические характеристики и приведены рекомендации по выбору преобразователей для скважинных и циркуляционных насосов.

1 Зачем нужен частотный преобразователь?

Практически все современные насосы, реализующиеся в бюджетной и средней ценовой категории, спроектированы по принципу дросселирования. Электромотор таких агрегатов всегда работает на максимальной мощности, а изменение расхода/давления подачи жидкости осуществляется посредством регулировки запорной арматуры, которая меняет сечение пропускного отверстия.

Такой принцип работы имеет ряд существенных недостатков, он провоцирует появление гидравлических ударов, так как сразу же после включения насос начинает качать воду по трубам на максимальной мощности. Также проблемой является высокое энергопотребление и быстрый износ компонентов системы — как насоса, так и запорной арматуры с трубопроводом. Да и о точной настройке такой системы водоснабжения дома из скважины речи быть не может.

Вышеописанные недостатки несвойственны насосам, оснащенным частотным преобразователем. Данный элемент позволяет эффективно управлять давлением, создаваемым в трубопроводе водоснабжения либо отопления, с помощью изменения величины поступающей на мотор электроэнергии.

Схема работы насоса в разных режимах

Как можно увидеть на схеме, насосное оборудование всегда рассчитывается по параметру предельной мощности, однако в режиме максимальной нагрузки насос работает лишь в периоды пикового потребления воды, что бывает крайне редко. Во всех остальных случаях повышенная мощность оборудования является излишней. Частотный преобразователь, как показывает статистика, позволяет экономить до 30-40% электроэнергии при работе циркуляционных и скважинных насосов.
к меню ↑

1.1 Устройство и алгоритм работы

Частотный преобразователь для насосов водоснабжения является электротехническим прибором, который преобразует постоянное напряжение электросети в переменное по предварительно заданной амплитуде и частоте. Практически все современные преобразователи выполнены по схеме двойного изменения тока. Такая конструкция состоит из 3-ех основных частей:

  • неуправляемый выпрямитель;
  • импульсный инвертор;
  • система управления.

Ключевым элементом конструкции является импульсный инвертор, который в свою очередь состоит из 5-8 ключей-транзисторов. К каждому из ключей подключается соответствующий элемент обмотки статора электромотора. В зарубежных преобразователях используются транзисторы класса IGBT, в российских — их отечественные аналоги.

Система управления представлена микропроцессором, который параллельно выполняет функции защиты (отключает насос при сильных колебаниях тока в электросети) и контроля. В скважинных насосах для воды управляющий элемент преобразователя подключается к реле давления, что позволяет функционировать насосной станции в полностью автоматическом режиме.

Экономия электроэнергии при использовании ЧП

Алгоритм работы частотного преобразователя достаточно прост. Когда реле давления определяет, что уровень давления в гидробаке упал ниже допустимого минимума, передается сигнал на преобразователь и тот запускает электромотор насоса. Движок разгоняется плавно, что снижает воздействующие на систему гидравлические нагрузки. Современные преобразователи позволяют пользователю самостоятельно устанавливать время разгона электродвигателя в пределах 5-30 секунд.

В процессе разгона датчик сигнала непрерывно передает на преобразователь данные о уровне давления в трубопроводе. После того, как оно достигает требуемой величины, блок управления останавливает разгон и поддерживает заданную частоту оборотов мотора. Если подключенная к насосной станции точка водопотребления начнет расходовать больше воды, преобразователь увеличит давление подачи путем повышения производительности насоса, и наоборот.
к меню ↑

1.2 Как работает насос в паре с частотным преобразователем? (видео)

2 Рекомендации по выбору и установке оборудования

Если используемый вами насос не обладает встроенным частотным преобразователем, то приобрести и установить такой регулятор мощности можно самостоятельно. Как правило производители насосов в техническом паспорте указывают, какой конкретно преобразователь подойдет к данном модели оборудования.

Если же рекомендаций нету, и выбор прибора полностью лег на ваши плечи, руководствуйтесь следующими критериями:

  1. Мощность — преобразователь напряжения всегда подбирается исходя из мощности электропривода, к которому он подключается.
  2. Входное напряжения — указывает на силу тока, при которой преобразователь остается работоспособным. Тут необходимо выбирать с оглядкой на колебания, которые могут быть в вашей электросети (пониженное напряжение приводит к остановке прибора, при повышенном он может попросту выйти из строя). Также учитывайте тип двигателя насоса — трех, двух или однофазный.
  3. Диапазон частот регулировки — для скважинных насосов оптимальным будет диапазон 200-600 Гц (зависит от изначальной мощности насоса), для циркуляционных 200-350 Гц.
  4. Количество ходов и выходов управления — чем их больше, тем больше команд и, как следствие, режимов работы преобразователя в сможете настроить. Автоматика позволяет задать скорость оборотов при пуске, несколько режимов максимальных оборотов, темпы разгона и т.д.
  5. Способ управления — для скважинной насосной станции удобнее всего будет выносное управление, которое можно расположить внутри дома, тогда как для циркуляционных насосов отлично подойдет преобразователь с пультом ДУ.

Циркуляционный насос Грундфос с частотным преобразователем

Если вы отсеяли все представленные на рынке приборы и столкнулись с тем, что подходящего по характеристикам оборудования попросту нет, необходимо сузить критерии выбора до ключевого фактора — потребляемого двигателем тока, по которому подбирается номинальная мощность преобразователя.

Также выбирая блок управления частотой, особенно от отечественных либо китайских производителей, учитывайте срок гарантийного обслуживания. По его продолжительности можно косвенно судить о надежности техники.

Пару слов о производителях. Ведущей компанией в данной сфере является фирма Grundfoss (Дания), которая поставляет на рынок свыше 15 различных моделей преобразователей. Так, для насосов с трехфазным электродвигателем подойдут модель Micro Drive FC101, для однофазных (работающих от стандартной электросети 220В) — FC51.

Более доступным в ценовом плане является оборудование компании Rockwell Automation (Германия). Фирма предлагаем линейку преобразователей PowerFlex 4 и 40 для маломощных циркуляционных насосов и серию PowerFlex 400 для скважинных насосных станций (от одного преобразователя могут работать сразу 3 параллельно подключенных насоса.

Учитывайте, что цена хорошего преобразователя подчас может доходить до стоимости насоса, поэтому подключение и настройка такого прибора должна выполняться исключительно специалистами.

Частотный преобразователь как средство повышения эффективности насосов

Оптимизация процессов и сокращение издержек важны на любом уровне — от крупного предприятия до частного индивидуального хозяйства. Существенно повысить эффективность помогает модернизация насосного оборудования. Включение в систему частотного преобразователя для управления насосами улучшает качество работы и заметно экономит денежные средства на обслуживание и ремонт.

Что такое преобразователь частоты, зачем он нужен

Частотный преобразователь (ПЧ, преобразователь частоты, частотник, частотный регулятор) — современное высокотехнологичное устройство с микропроцессорным управлением, множеством функций и гибкими настройками.

Частотники созданы для качественного контроля скорости и/или момента электродвигателей переменного тока любого назначения, методом согласованного изменения выходной частоты и напряжения. Современные модели способны преобразовывать 50 Гц входящей электросети в необходимые значения. Встроенный инвертор формирует электрическое напряжение заданной формы на обмотках контролируемого электродвигателя. Благодаря этому можно плавно запускать и останавливать двигатель, поддерживать его обороты в нужном диапазоне и оперативно изменять их до нужных значений.

В насосных системах функцию привода выполняет электродвигатель. Поэтому для управления насосом частотник подходит наиболее оптимально. Практически любой электронасос можно дооснастить преобразователем.

Разновидностей ПЧ существует множество. Для управления однофазными и трехфазными электронасосами используют универсальные общепромышленные (например, «Веспер» из линейки EI-7011), которые управляют любыми электродвигателями в широком диапазоне мощностей.

Но выгоднее купить для насосов специализированный частотный преобразователь (например, «Веспер» E5-Р7500. Такие модели ПЧ настроены на выполнение конкретного круга задач, заранее оснащены всем необходимым — переплачивать за лишний функционал не нужно.

Помимо опций и функционала, преобразователь частоты для насоса должен соответствовать мощностным характеристикам управляемого привода. Производители насосов в техническом паспорте указывают, какой преобразователь подойдет к данной модели оборудования. Если таких рекомендаций нет, за помощью по подбору можно обратиться к специалистам компании «Веспер».

Принцип работы преобразователя частоты в тандеме с насосом

Классическая водопроводная насосная система, без ПЧ в контуре, работает по принципу дросселирования. Электродвигатель в этой схеме постоянно работает на максимальных оборотах, а давление в системе регулируется запорной арматурой, управление в лучшем случае осуществляется с помощью реле или же вручную.

Метод имеет ряд существенных недостатков:

  • быстрый износ оборудования;
  • высокий расход электроэнергии;
  • частые аварийные ситуации;
  • низкое качество работы.

Лишь в периоды пикового потребления воды насос работает в режиме максимальной нагрузки. Во всех остальных случаях повышенная мощность оборудования не оправдана. Это учитывается в продвинутой классической схеме, за остановку и старт электронасоса отвечает автоматика (реле). Но так как реле не способно регулировать обороты привода, по сигналу происходит резкий старт на максимальные обороты. Это приводит к гидроударам и перегрузкам в электросети, в результате система быстро изнашивается.

Частотные преобразователи «Веспер» для управления насосами оснащены микропроцессорами с обратной связью. С их помощью можно интеллектуально и бережно регулировать работу оборудования в соответствии с текущими потребностями системы.

Алгоритм работы прост. Когда датчики фиксируют, что уровень давления в трубопроводе либо уровень в резервуаре упал ниже минимума, передается сигнал на преобразователь. Тот плавно запускает электромотор насоса, ударные нагрузки на трубопровод и электросеть исключаются. Подходящее время разгона электродвигателя можно выставить самостоятельно.

Датчики в режиме реального времени передают на преобразователь информацию в процессе разгона насоса. После того, как требуемые величины достигаются, ПЧ прекращает разгон и поддерживает частоту оборотов электромотора. Если уровень снова начнет падать или расти, микропроцессор автоматически отрегулирует давление, изменив производительность насоса. Параллельно частотник выполняет функции защиты (отключает оборудование при сильных колебаниях тока в электросети).

Где используются насосные пч, плюсы и минусы применения

Частотники можно использовать с насосными установками самого различного назначения. Особенно важны частотные преобразователи для насосов систем горячего и холодного водоснабжения, отопления. Результат модернизации конечный потребитель ощутит и оценит сразу же. Водонапорная система с ПЧ в составе функционирует полностью в автономном режиме. При этом качество подачи воды остается неизменным в любое время суток.

Масштаб системы не имеет значения. ПЧ способны заметно поднять эффективность промышленных насосных станций и бытовых колодезных и артезианских миниводокачек на один дом.

Преимущества управления насосами с преобразователем частоты:

  • экономия электроэнергии (до 30–40%);
  • исключена ситуация «сухого хода» (без воды в системе);
  • нет температурных скачков при подаче горячей воды;
  • стабильная сила напора;
  • отсутствует избыточное давление в трубах;
  • продлен ресурс электронасоса и трубопровода;
  • снижен уровень шума;
  • можно упростить систему, убрать из схемы гидроаккумулятор и др. ненужные узлы и агрегаты.

Минусы схемы с ПЧ:

  • начальные вложения на покупку прибора;
  • необходим специалист для подключения и настройки оборудования.

Эти недостатки быстро компенсируются за счет удешевления обслуживания. В результате сокращаются издержки на поддержание работоспособности и ремонт, стоимость владения в целом уменьшается, а комфорт заметно повышается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *