Чем отличается заземление от зануления?

Заземление и зануление: разбираемся в чем разница

Любая электроустановка должна быть заземлена. Это требование Правил устройства электроустановок (ПУЭ) одинаково распространяется на электроприборы с металлическим и пластиковым корпусом, устройства подключения и коммутации: распределительные и вводные щитки, розетки, выключатели.

Для чего необходимо заземление

Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.

Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.

Важно! Именно для этого, автоматы устанавливаются в разрыв фазного проводника. Нулевая шина может быть подключена напрямую.

Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?

Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.

Мы с вами рассматриваем однофазные сети, в которых для питания используются две линии: ноль и фаза. Трехфазные системы в быту применяются редко, поэтому знание этих систем необходимо лишь профессионалам.

Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.

Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы. То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током. Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.

Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза — «земля» — нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.

Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.

Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление

Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.

При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.

Важно! Как нельзя организовывать защитное заземление

То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.

Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.

Видео по теме

Заземление и зануление: в чем разница по уровню безопасности

В предназначении и монтаже этих способов защиты от поражения электрическим током путаются даже профессиональные электрики. Речь идет не о всех, но прецеденты есть. А ведь элементарное понятие терминов иногда спасает десятки жизней. Даже если говорить не о поражении током, а о сдаче в эксплуатацию нового частного дома. Если выполнить защиту неправильно, контролирующая организация не разрешит подачу напряжения на вводной щит. И правильно сделает, никому не хочется брать на себя ответственность за жизни людей. Сегодня разберемся, что означают термины заземление и зануление, в чем разница между ними, и когда возможно использование того или иного способа защиты.

Требования электробезопасности: выдержки из ГОСТ

В соответствии с ГОСТ 12.1.009–76:

  • защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;
  • зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S.

Согласно ПУЭ заземление выполняется (при наличии контура или возможности его монтажа) в обязательном порядке. Заземленными должны быт все металлические корпуса электроприборов, которые гипотетически могут попасть под напряжение. Если возможность заземления отсутствует, производится защитное зануление с обязательной установкой устройств защитного отключения (УЗО) и автоматических выключателей в вводном электрическом щите.

Конечно, язык, которым написаны ПУЭ и ГОСТ бывает сложен для человека без электротехнического образования, а значит стоит разобрать подробно, что такое заземление и зануление на обычном языке, понятном простому обывателю.

Все металлические шкафы и корпуса приборов должны быть заземлены или занулены

Что такое заземление: как устроено, принцип работы и преимущества такой защиты

Принцип работы заземления в том, чтобы не допустить прохождения электрического тока через тело человека, если в силу каких-либо обстоятельств корпус электроприбора окажется под напряжением. Такое может случиться при повреждении изоляции жил кабеля. Рассмотрим пример. Жила с поврежденной изоляцией соприкасается с металлическим корпусом микроволновой печи. Хозяйка, готовя пищу на кухне, прикасается к электроприбору, который не заземлен. Это приводит к тому, что ток устремляется к земле, используя человеческое тело, как проводник. Итог может быть самым плачевным, вплоть до летального исхода.

Неисправная электропроводка приводит к возникновению напряжения на корпусе бытовых приборов

Теперь разберем для чего нужно заземление, как оно работает. Тот же пример, но уже с использованием защиты. Требования к заземлению применяются самые жесткие. При замерах сопротивление контура должно практически отсутствовать, что позволяет току беспрепятственно уходить в землю по шине. Законы физики не дают напряжению протекать через человеческое тело, которое имеет свое сопротивление. У одних оно больше, у других меньше, но наличие его не оспаривается. Получается, что ток утекает по пути наименьшего сопротивления, через заземлитель. Если при этом в схему включено УЗО, оно определит утечку и отключит подачу электроэнергии на прибор.

Устройство защитного отключения (УЗО) срабатывает при малейшей утечке тока

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

Источником опасности может стать любой незаземленный электроприбор

Важная информация! В многоквартирных домах современной постройки и частных секторах в наши дни монтаж зануления запрещен. Это продиктовано целями безопасности проживающих. Автоматика может подвести, что приведет к непоправимым последствиям.

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

Правильно выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

Зануление и заземление: в чем разница

Разница этих систем в методе осуществления защиты. При устройстве защитного заземления роль отсекателя напряжения при возникновении аварийной ситуации берет на себя УЗО, а в случае монтажа зануления УЗО становится бессильно, сработать может только автомат. Почему так происходит? Устройство защитного отключения реагирует только на токовые утечки, совершенно игнорируя любые перегрузки, включая короткое замыкание. В случае монтажа зануления и включения в схему УЗО без автомата, при коротком замыкании УЗО не срабатывает, а попросту сгорает, не отключив напряжение с линии.

Вот к чему может привести неправильный монтаж защитного зануления

Чем отличается заземление от зануления: обобщение

Заземление отличается от зануления способом защиты и монтажом. Такие системы противоречат друг другу, а значит монтаж схемы с включением обоих вариантов, неприемлем. Зануление устраивается только в многоквартирных домах, не оборудованных собственным контуром. В иных случаях такой монтаж запрещен. О способах его устройства сейчас поговорим подробнее.

Что такое зануление и как его правильно устроить

Схема монтажа выглядит следующим образом. Пришедшая к вводному автомату нейтраль раздваивается, каждая из жил идет на отдельную шину. Одна из шин становится нулевой, а вторая заземляющей. От шины нейтрали жилы идут через автоматику и дальше на все нулевые контакты потребителей квартиры. Заземляющая соединяется с корпусом вводного щита, провод желто-зеленого цвета от нее идет на соответствующие контакты розеток и осветительные приборы, которые этого требуют. Соприкосновение заземляющего провода с нулевым после защитной автоматики запрещено.

Вывод заземления из-под земли. Ниже, на определенном расстоянии находится контур

Важная информация! Неправильный монтаж защитного зануления приводит к отгоранию жил кабелей, пожару. Так же возможно поражение электрическим током вплоть до летального исхода.

Лучший вариант защиты это заземляющее устройство?

Единственно правильный ответ на этот вопрос – да. Это действительно так. Контур заземления, смонтированный по всем правилам, защитит человека намного лучше предыдущего варианта. Улучшить защиту можно при помощи дополнительных устройств – автоматических выключателей, УЗО или дифавтоматов. Ведь что такое защитное заземление? По своей сути это система отвода электрического тока в случае аварии туда, где он не может навредить человеку.

Так должен выглядеть готовый контур заземления частного дома

Касаемо заземляющего устройства можно сказать, что оно может быть различным – контур заземления по периметру здания, «треугольник» во дворе или естественный заземлитель. Все правила и способы его монтажа мы обязательно рассмотрим в одной из ближайших тем. Но для общей информации имеет смысл понять определение, что является естественным заземлителем.

Полезно знать! В качестве естественного заземлителя можно использовать любые металлические конструкции, находящиеся под землей, за исключением трубопроводов ГСМ, канализации и предметов, покрытых антикоррозийными составами. Водопроводные трубы для этой цели могут использоваться.

В таких домах заземление не предусмотрено – придется довольствоваться занулением

Преимущества и недостатки квартирного зануления

О недостатках такой защиты говорилось сегодня много. Попробуем обобщить информацию. При таком способе нельзя быть уверенным на 100% в своей защите. Особенно, если монтаж выполнен неправильно. Еще одним минусом является то, что при слабом контакте или поврежденном кабеле, автомат просто не успеет сработать. В результате провод отгорит, что потребует ремонта.

Положительным в такой защите является возможность ее монтажа в многоквартирном доме старой постройки, где контур заземления отсутствует. Хоть и плохая, но все же защита. Сразу вспоминается поговорка, «с паршивой овцы хоть шерсти клок» или «на безрыбье и рак – рыба». Предлагаем посмотреть несколько фото примеров щитов с выполненным в них занулением.

Заземление и зануление — в чем разница?

Понятия заземление и зануление наверняка многим знакомы. Однако не все четко понимают, что и как работает. Некоторые считают, что заземление и зануление — это одно и тоже. Другие делают акцент, что зануление — это только перемычка между PE и N в старом жилом фонде с системой TN-C. Второе утверждение уже имеет долю правды, а ошибка лишь в приравнивании «двухпроводки» к системе TN-C. Поэтому постараемся наглядно и понятно разобраться с заземлением и занулением.

Распределительный трансформатор — фаза, ноль (нейтраль)

Для начала стоит кратко ознакомиться с путем и способами подачи напряжения в розетки вашего дома. Последнее промежуточное звено, от которого к вам в дом поступает электроэнергия — это распределительный трансформатор.

Получив три фазы от генераторов на электростанции, трансформатор понижает напряжения и со вторичной обмотки отдает мощность потребителю через фазный и совмещенный рабочий и защитный нулевой (PEN) проводник.

Ноль выполняет роль нейтрали, начала и служит исходной точкой для измерения характеристик напряжения. В ней соединяются фазные обмотки при схеме подключения «звезда». Потенциал в этой точке равен нулю. А разность потенциалов между фазой и нейтралью соответствует фазному напряжению 230 Вольт.

Что такое зануление

Теперь можно перейти непосредственно к понятию зануления. Для начала ознакомимся с определением из ПУЭ. Пункт 1.7.31. Защитное зануление в электроустановках напряжением до 1 кВ — это преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

То есть простыми словами зануление электроустановки (для примера стиральной машины) — это соединение ее корпуса (проводящей части) с нейтралью (нулевой точкой) трансформатора для того, чтобы в случае контакта при повреждении фазы с корпусом в цепи образовался ток короткого замыкания или дифференциальный ток для защитного автоматического отключения поврежденного участка (стиральной машины).

Автоматическое отключение питания производится с использованием автоматических выключателей, УЗО или дифференциальных автоматов.

Что такое заземление

Теперь перейдем к заземлению и рассмотрим пункт 1.7.78. При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ все открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания, если применена система TN, и заземлены, если применены системы IT или TT.

То есть, когда речь идет о системах TN-C, TN-S, TN-C-S, то для электробезопасности здесь в основном применяется зануление. А вот когда у вас система TT, то здесь зануления нет и для электробезопасности используется защитное заземление.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников.

Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

В данном случае присутствует понятие земля:

  • Пункт ПУЭ 1.7.20. Зона нулевого потенциала (относительная земля) — часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю.
  • Пункт ПУЭ 1.7.21. Зона растекания (локальная земля) — зона земли между заземлителем и зоной нулевого потенциала. Термин земля, используемый в главе ПУЭ, следует понимать как земля в зоне растекания.

Может показаться, что определения земли противоречивые. Особенно если ознакомиться с еще одним определением из ПУЭ, таким как напряжение на заземляющем устройстве. Это напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала. И здесь встает логический вопрос — зона нулевого потенциала независима от какого заземлителя? Ведь, если не соединить ноль трансформатора с землей через заземлитель, никакого напряжения на любом другом заземлителе при замыкании на землю не будет. Единственное логическое объяснение — глухозаземленная нейтраль трансформатора это неотъемлемая часть системы, а заземлители необходимо рассматривать не относящиеся непосредственно к нейтрали.

С землей определились. Перейдем непосредственно к заземлению и разберемся, как оно работает при появлении фазы (выносе потенциала) на корпусе заземленной электроустановки. Здесь уже связь с нейтралью осуществляется через ваше заземление TT, землю (как проводник) и заземление нейтрали трансформатора. В данном случае, в отличие от зануления в системе TN, за счет появления в цепи значительного сопротивления токи короткого замыкания могут быть недостаточными для отработки автоматических выключателей. Поэтому в системе TT для защиты при косвенном прикосновении должно быть выполнено автоматическое отключение питания с обязательным применением УЗО.

Чем отличается заземление от зануления?

Рассмотрев процессы заземления и зануления, можно отметить, что они имеют общие защитные функции, но организованы по-разному.

И заземление и зануление организуют связь с нулевой точкой трансформатора:

  • В первом случае эта связь происходит через проводимость земли с большим сопротивлением.
  • Во втором случае — через PEN проводник со значительно меньшим сопротивлением.

Видео по теме заземления и зануления

Подводя итог, можно отметить, что более надежный способ для обеспечения электробезопасности — зануление. Это обусловлено низким сопротивлением связи PE с нейтралью трансформатора. Если же условия электробезопасности в системе TN не могут быть обеспечены, то используется заземление при помощи заземлителя, не присоединенного к нейтрали.

Принцип работы и отличия заземления от зануления

Практически каждый человек слышал о таком способе защиты от поражения током, как заземление электрооборудования. Установка трехпроводной электрической магистрали в современных строительных сооружениях является обязательным условием. В старых сооружениях не использовалась такая система защиты. В этом случае электромонтажники прибегают к занулению проводки.

  1. Для чего необходимо заземление
  2. Типы заземления в бытовых условиях
  3. Что такое зануление электрических приборов
  4. Зануление и заземление – в чем разница
  5. Отличие по области применения
  6. Что лучше
  7. Требования к заземлению и занулению
  8. Практические советы

Для чего необходимо заземление

Из нормативной документации ГОСТа № 12.01.009-76 следует, что защитное заземление – это создание единого контура с землей и металлическими токоведущими частями, которые в процессе эксплуатации электротехнических приборов могут оказаться под напряжением, например, корпус микроволновой печи или стиральной машины.

Заземление требуется, чтобы при образовании напряжения в тех местах, где его быть не должно, электричество уходило в землю. Это позволяет предотвратить поражение током жителей квартиры или дома. Как правило, подобные явления наблюдаются при нарушении целостности изоляционного слоя и касания токоведущей жилы корпуса.

Типы заземления в бытовых условиях

В бытовых условиях правильно реализованная система заземления гарантирует бесперебойную работу всех электрических приборов. Во времена существования Советского Союза в домах не было большого скопления электроустановок, следовательно, такая мера безопасности практически не использовалась.

В то время широкое распространение получила эксплуатация системы TN-C, в которой заземляющий провод РЕ коммутировался с рабочим нулем в единую токопроводящую жилу РЕN, а к квартире подключался двухжильный провод. Эта система устарела, на замену пришла новая — TN-C-S. Ее особенность заключается в разъединении в распределительном щитке провода PEN на РЕ и N.

Все современные здания или строения, подлежащие модернизации, обслуживаются по трех- или пятипроводной схеме. В помещение подается три линии:

  • земля;
  • рабочий ноль;
  • фаза.

Все вычислительные и бытовые приборы современного образца адаптированы под трехпроводную систему. Штекеры и розетки оснащены специальными клеммами заземления.

Если здание устаревшее и не оснащено системой заземления, а проводка двухпроводная, все современные трехпроводные электротехнические приборы утрачивают свои качества. Например, сетевой фильтр становится обычной переноской. В этом случае установка зануления в квартире согласно нормативному документу ПУЭ 1.7.132 запрещена.

Что такое зануление электрических приборов

Из нормативной документации ГОСТа № 12.01.009-76 следует, что зануление – это преднамеренное электрическое соединение с нулевым защитным проводником нетоковедущих частей электрооборудования, которые могут оказаться под напряжением в результате неисправностей.

Есть понятие – глухозаземленная нейтраль. На трансформаторные подстанции по ЛЭП приходит 3 фазы. Глухозаземленная нейтраль – это собственное заземление, которое установлено вокруг. Он идет от подстанции на жилые дома и здания с фазными проводами.

Зануление реализуется следующим образом: в распределительном щитке делают разводку, которая идет с глухозаземленной нейтрали и разбивается перед автоматом на ноль, который идет в квартиру. По существу это так и останется глухозаземленная нейтраль, которая используется для зануления.

Занулять оборудование от рабочего автомата запрещено, это опасно для жизни.

Если процесс зануления благополучно завершен, при касании корпуса включенного устройства с токоведущей оголенной жилой произойдет замыкание и сразу сработает автомат на вводе в квартиру.

Зануление и заземление – в чем разница

Обе системы защиты выполняют одинаковую функцию – защищают домочадцев от поражения электрическим током при касании оголенного провода или неисправных электроустановок. Разница заключается в том, что зануление моментально обесточивает помещение при опасном контакте, а заземление отводит всю «опасность» в землю.

Отличие по области применения

Основное правило, которые должны знать все электромонтажники – одновременно реализовать оба способа защиты запрещается. Если есть возможность организовать заземление, рассматривать вариант зануления не стоит.

  • В многоквартирных зданиях заземление монтируют по двум сторонам здания или вокруг. Старые здания в большинстве своем исключения, в них вовсе может отсутствовать контур. В загородных домах реализация заземляющего контура — забота домовладельца. Как правило, заземляющий контур имеет треугольную форму.
  • Защитное зануление в квартирах применяется лишь при отсутствии заземления. Как правило, речь идет о многоквартирных домах старого образца. Реализуя этот способ защиты, дополнительно требуется приобретать и устанавливать автоматы и УЗО.

В промышленных отраслях зануление представляет собой одну из составляющих общего заземления больших помещений и всего оборудования, находящегося в них. Зануление в бытовых условиях — не совсем безопасный способ коммутации заземляющего контура электрических приборов к рабочему нулю.

Что лучше

Подготовка заземляющего контура

Заземление в сравнении с занулением имеет большое количество преимущественных особенностей.

  • Заземляющий контур можно реализовать самостоятельно в домашних условиях. Для этого потребуется небольшое количество металла и сварочный аппарат. Если же говорить о занулении, то для реализации защиты требуются знания, которые связаны не только с проведением подсчетов, но и выбором наиболее подходящей точки подсоединения провода к нейтрали.
  • Если произойдет обрыв нулевого провода в распределительном щитке, система зануления сразу выйдет из строя и будет неработоспособной. Заземление в этом случае имеет превосходство, поскольку используемый провод РЕ не отваривается и не отгорает. Рекомендуется раз в год проверять его состояние и при необходимости подтягивать клеммы.

Требования к заземлению и занулению

В защитном занулении происходит разрыв между землей и контактом заземления электроприбора

Главное требование – правильная реализация, которая обеспечит полную безопасность и защиту человека от поражения электрическим током в случае аварийных или нештатных ситуаций.

Основные требования к заземлению – отвод напряжения в слои почвы. Земля поглощает электрический ток, предотвращая нанесение урона человеческому здоровью.

Требования к занулению – отключение защитной автоматики, если произошло соприкосновение токонесущих элементов или оголенных проводов с поверхностями металлических корпусов электротехнических деталей и бытовой техники, где напряжения быть не должно.

Практические советы

При строительстве частного дома заземление является обязательным условием

При полной или частичной замене, модернизации или ремонте проводки в квартире или загородном доме важно не пренебрегать правилами личной безопасности. Несколько практических советов:

  • Если установлена двухпроводная электрическая сеть, при установке трехпроводной розетки нельзя соединять заземляющий контур и рабочий ноль. Это нарушение одного из основных правил безопасности. Если пренебречь им, корпус бытового прибора, подключенного к сети, всегда будет под напряжением, что отрицательно сказывается на производительности и эксплуатационном сроке, а также несет опасность жизни и здоровью человека и домашних питомцев.
  • Во время строительства дачи или загородного дома установка заземления – обязательное условие эксплуатации электричества. Недорогая, имеющая простую конструкцию заземляющая система сбережет здоровье людей и целостность всей дорогостоящей бытовой техники, электротехнических приборов.
  • Для обеспечения электроэнергией мощных бытовых приборов, например, стиральной или посудомоечной машины, бойлера, в помещении рекомендуется проводить отдельную магистраль электропроводки. Обусловлено это тем, что при одновременном запуске этих приборов датчики УЗО (устройства защитного отключения) и предохранительные датчики будут часто срабатывать, отключая полностью подачу ресурса на квартиру или дом.

Предохранительный автомат и УЗО – это два абсолютно разных электротехнических прибора. Каждый из них имеет свои конструктивные особенности и выполняет определенные функции.

Устройство защитного отключения – это защита человека и домашних питомцев, прибор быстрого срабатывания. Автомат – это электротехнический прибор, который улавливает изменение параметров электрической сети, в частности ее перегрузку. Его основной недостаток – может сработать не сразу, а по истечении определенного времени. Чтобы совместить возможности двух защитных приборов и нивелировать их недостатки, был разработан гибридный прибор – дифавтомат.

В чем разница между заземлением и занулением

При монтаже электросетей в помещениях разного назначения обязательно должна быть предусмотрена защита, предотвращающая возможное поражение человека током. И для этого используется заземление и зануление. Причем далеко не все знают, в чем их разница. Ведь обе они обеспечивают безопасность использования электрических приборов.

По сути, эти два понятия во многом схожи, из-за чего их часто путают, но выполняют они свои функции по-разному. Поэтому постараемся разобраться, что в них общего и чем отличаются.

Заземление

Начнем с разбора каждой системы по отдельности.

Так, заземление – это преднамеренное соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю посредством нулевого проводника.

По сути, это единая система, соединяющая между собой токопроводящие элементы приборов и оборудования (к примеру, их корпусы), подсоединенные к ним провода, и штыри, закопанные в землю (контур).

Благодаря высокому сопротивлению контура при касании фазного провода на корпус в случае пробоя, большая часть напряжения уходит в землю, и хоть потенциал все же будет оставаться на корпусе, но его значение будет значительно сниженным и неопасным для человека.

Международный стандарт, разработанный МЭК, включает в себя несколько систем заземления, различия между которыми сводится к разным видам заземления источника питания (генератора или трансформаторной подстанции), и заземления открытых участков сети, приборов.

В стандарт входит три системы – TN, TT и IT.

Первая буква индекса указывает на тип заземления источника (T – «земля), получается, что в первых двух системах трансформаторная подстанция подключается к заземляющему контуру.

Что касается третьей (IT), то у нее источник питания заизолирован, либо же подключен к прибору, обеспечивающему высокое сопротивление (I – изоляция).

Вторая буква индекса указывает на тип заземления открытых участков сети. В системе TN (N — нейтраль) эти участки соединены с нейтральным проводником источника, подключенного к заземляющему контуру (глухое заземление нейтрали).

Для соединения оборудования и приборов используются рабочий (N) и защитный (PE) нулевые проводники.

Что касается двух других систем – TT и IT, то второй буквенный индекс указывает на то, что открытые участки сети, оборудование и приборы заземляются своим отдельным контуром.

В свою очередь система TN делится на подсистемы, их три – TN-C, TN-S, TN-C-S.

Различия между ними сводятся к использованию разных защитных проводников, которыми потребители соединяются с нейтралью источника.

В подсистеме TN-C используется объединенный проводник (PEN), совмещающий в себе и рабочий, и защитный «нуль». Эта подсистема является уже устаревшей, поэтому при укладке новых электросетей она не используется.

Подсистема TN-S отличается тем, что у нее рабочий и защитный «нули» — это разные проводники. То есть, к нейтрали подключается N-проводник, а к заземляющему контуру – PE-проводник, хоть они совмещены на источнике питания.

Третья подсистема – TN-C-S является промежуточным звеном между первыми двумя подсистемами. У нее от нейтрали отходит PEN-проводник, то есть нулевые проводники объединены, но на определенном участке сети они разделяются и к потребителям подходит отдельно рабочий и защитный «нули». После разделения защитный «нуль» дополнительно заземляется.

Более подробно о системах заземления, их достоинствах и недостатках можно почитать здесь https://elektrikexpert.ru/sistemy-zazemlenij.html.

Требования, выдвигаемые заземлению достаточно серьезные. Ведь оно должно обеспечить отвод опасного напряжения с прибора или оборудования в случае пробоя.

Заземление в обязательном порядке делается для сетей, в которых напряжение выше 42 В переменного тока или 110 В – постоянного тока.

Поэтому при проектировании должны правильно подбираться части сети и оборудования, которые подлежат обязательному заземлению, осуществляться контроль за тем, чтобы заземляющая цепь нигде не прерывалась.

Серьезно подходят и к выбору проводников, их сечение должно обеспечивать соответствующую пропускную способность.

Все требования, которые выдвигаются системам заземления прописаны в ПУЭ (Правила устройства электроустановок).

Зануление

А теперь по занулению. В определении этого термина указывается, что зануление – преднамеренное соединение токопроводящих, но не находящихся под напряжением, элементов приборов и оборудования с глухозаземленной нейтралью (трехфазные трансформаторы), выводом источника тока (однофазный трансформатор), средней точкой источника, подающего постоянный ток.

То есть, корпус любого прибора, подключенного к сети, должен быть дополнительно соединен с нейтралью источника питания.

Для систем TT и IT зануление не применяется, поскольку для заземления потребителей используется отдельный контур.

Для создания зануления используется нулевой защитный проводник (PE), который соединяется с нейтралью источника.

Но в ПУЭ сразу же дается пояснение, что в качестве защитного проводника может использоваться и рабочий (N), что подразумевает, что для создания зануления может использоваться и PEN-проводник.

В чем их отличие?

Получается, что зануление, по сути, это то же заземление, сделанное по системе ТN, но если рассматривать более подробно, то разница между ними есть.

Первое, это то, что при заземлении совмещенный нулевой PEN-проводник (системы TN-C и TN-C-S) и PE-проводник (система TN-S) выступают в качестве посредника между приборами и заземляющим контуром трансформатора.

То есть, имеется источник питания, возле которого закопан контур и вместе они соединены.

Проводка от источника идет на потребитель (помещение), где она разветвляется, чтобы обеспечить запитку всех электроприборов и оборудования.

Чтобы заземлить эти приборы (обеспечить защиту), используется та же проводка, а именно нулевые проводники, и контур трансформатора.

А вот при занулении выполняется соединение не с контуром, а непосредственно с нейтральным проводником трансформатора.

А поскольку в обоих случаях используется один проводник — нулевой (в совмещенном – PEN-проводник, в разделенном – РЕ-проводник), то в конструктивном плане заземление и зануление – одно и то же.

Второе, каждый из них работает по-разному, хоть и конструкция – одинакова.

В случае с заземлением, при появлении опасного потенциала на незакрытых участках сети, он будет отводиться в землю посредством заземляющего контура, обладающего высоким сопротивлением.

Зануление же работает с точностью до наоборот. При соприкосновении фазы с корпусом, подключенным к нулевому проводнику, происходит резкое возрастание силы тока в следствие малого сопротивления, то есть происходит короткое замыкание, в результате которого срабатывают автоматические выключатели, устройства защитного отключения, либо же плавятся предохранители.

Вот и получается, что заземление и зануление в техническом плане – одно и то же, но обеспечивают они защиту по-разному.

В целом же, обе они направлены на обеспечение максимальной защиты человека от возможного поражения электрическим током при пробое фазы на нуль, и дополняют друг друга.

Особенности создания заземления и зануления

Теперь о том, как все выглядит на деле. При создании подсистемы TN-C-S совмещенный нулевой проводник (PEN) тянется от трансформатора к помещению.

В вводном распределительном устройстве (ВРУ) происходит разделение его на N и PE-проводники. На конечный потребитель при этом доходит три провода – фаза, рабочий и защитный нули.

При подключении прибора получается, что посредством PE-проводника он соединяется с PEN-проводником, который является и соединителем с заземляющим контуром, и глухозаземленной нейтралью.

Примерно то же происходит и в подсистеме TN-S с той лишь разницей, что заземление и зануление осуществляется разделенными нулевыми проводниками.

То есть в этих двух подсистемах создавая заземление, автоматически выполняется и зануление.

А вот в системе TN-C этого не происходит. Дело в том, что в ней используется PEN-проводник, который не расщепляется на вводе.

Получается, что к конечному потребителю доходит только два провода – фаза и рабочий ноль, а защитного РЕ-проводника – нет, по сути, конечный потребитель не заземлен.

Поэтому и создается зануление – соединение корпусов потребителей с нулевым рабочим проводником.

Если в вышеуказанных подсистемах создавая заземление сразу же появляется и зануление, то в этой его приходится создавать отдельно.

В данном случае зануление является альтернативой заземлению, чтобы обеспечить хоть какую-то защиту.

Поэтому TN-C считается устаревшей, поскольку она не обеспечивает должную безопасность.

Часто возникает вопрос – зачем вообще нужно зануление, ведь заземления считается более безопасной системой.

Моделируем ситуацию: произошел пробой фазы на корпус. Заземление обеспечило отвод большей части напряжения в землю, но часть его все же осталась на корпусе, при этом произойдет повышение значения тока, хоть и незначительно.

Это не опасно для человека, но может привести к неприятным последствиям. Поскольку из-за отсутствия зануления не произойдет сильного скачка тока, то защитные средства просто не сработают, и поврежденный участок не отключиться.

В результате возможно повреждение оборудования или участка электросети, возникновение пожара.

Получается, что зануление и заземление дополняют друг друга, первый делает отключение поврежденного участка цепи, а второй нейтрализует негативные последствия возникшего КЗ в сети, обеспечивая максимально возможную защиту от поражения электрически током.

Часто указывается, что в системах TN-S и TN-C-S зануление не делается. И это так, но только частично. Ведь согласно изложенному, создавая заземление, делаем сразу и зануление. И только у TN-C зануление – отдельный вид работ.

Отсюда можно сразу и судить, где используется зануление, а где нет. Присутствует оно везде, где используется система TN. Но если в старых постройках его приходилось создавать отдельно, то в новых зданиях оно делается в процессе монтажа заземления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *