Электрофорная машина принцип действия

Что такое электрофорная машина и как она работает?

Генератор Вимшурста или электрофорная машина — это индукционный электростатический прибор, созданный как непрерывный источник электрической энергии. В XXI веке используется как вспомогательная техника для демонстрации физических опытов, касающихся различных электрических эффектов и явлений.

Немного из истории изобретения

В 1865 г. физик-экспериментатор из Германии Август Теплер разработал итоговые чертежи электрофорной машины. Одновременно с этим было сделано второе независимое открытие подобного агрегата немецким ученым Вильгельмом Хольцем. Главным отличием прибора была возможность получать большую мощность и разность потенциалов. Хольц считается создателем источника постоянного электрического тока.

Простая начальная конструкция применения электрофорной машины в 1883 г. была усовершенствована Джеймсом Уимсхерстом из Англии. Его модификация используется во всех физических лабораториях для наглядной демонстрации опытов.

Конструкция электрофорной машины

2 соосных диска вращаются друг против друга, неся при этом простейшие конденсаторы из алюминиевых секторов. Благодаря случайным процессам в первичный момент на участке одного из сегмента образуется заряд. Вызывается явление процессом трения о воздух. Из-за симметричности конструкции нельзя заранее предсказать итоговый знак.

В конструкции используются 2 лейденовские банки. Они создают из последовательно включенных конденсаторов единую систему. Это влияет на двойное уменьшение требований к рабочему напряжению в каждой емкости. Следует подбирать одинаковые номиналы, это залог равномерного распределения рабочего напряжения.

Снять напряжение призваны индукционные нейтрализаторы. Вся конструкция напоминает металлический гребень, парящий на некотором расстоянии над диском. В точку съема заряда приходят оба диска с эквивалентными знаками внешней поверхности. Нейтрализаторы спарены. После осуществления разгрузки сильно снижается заряд сегментов. В дополнительных конструкциях щетка легко соприкасается с краем диска.

Оператор за счет силы электрического привода либо собственной рукой насильно сближает отталкивающиеся элементы системы. Взаимодействующие друг с другом заряды стараются расположиться как можно дальше. Процесс способствует резкому росту поверхностной плотности зарядов во всех точках съема.

Электричество собирается в лейденовских банках с гребней нейтрализаторов. Происходит быстрый рост напряжения. Избежать выхода из строя системы помогает разрядник, прикрепленный к 2 электродам. Возможно получение дуги различно силы при регулировании дистанции между ними. Существует взаимосвязь: чем сильнее напряженность поля между 2 разрядниками, тем более шумный эффект сопровождает процесс опустошения банок Лейдена.

Сегменты остаются опустошенными после точки съема заряда. По течению движения устанавливаются уравнители потенциала или нейтрализаторы по принципу действия. Каждая противоположная сторона диска уже отдала заряд у различных щеток. В момент прохождения точки съема и после нее остаточные знаки заряда являются различными.

Отрезок толстой проволоки из меди с щетками из тончайших проволочек, парящих на небольшой высоте или трущих сегменты, способствует замыканию указанных противоположностей. Результат — заряды на обоих сегментах приравниваются к нулю, вся энергия превращается согласно закону Джоуля-Ленца в тепло, образующееся на утолщенной медной жиле.

Что такое банки Лейдена

Первым электрическим конденсатором, созданным учеными из Голландии Питером ван Мушенбруком, была лейденская банка. Изобретенный конденсатор имеет форму цилиндра с широким или средним горлом разного диаметра. Лейденскую банку делают из стекла. Изнутри и снаружи она оклеена специальным листовым оловом. Прикрывается изделие деревянной крышкой. Главной функцией изобретения является накопление и хранение больших зарядов.

Стимулировало создание такой банки широкое изучение электричества, общей скорости его распространения, а также свойств проводимости электроэнергии различных материалов. Благодаря ей получилось впервые добыть электрическую искру искусственным путем. Сейчас банки Лейдена применяются только как неотъемлемая часть электрофорных машин.

Каков принцип работы электрофорной машины

Из силы оператора берется энергия для смены знаков. Уже между уравнителями и щетками диски двигаются со взаимным отталкиванием навстречу друг другу. Свою роль играет количество оборотов в минуту. Повышена плотность заряда. Сильнейший заряд противолежащих дисков выталкивает остатки через отрезки медной проволоки. Из этого вытекает энергия, достаточная для смены знака.

Электрофорная машина — принцип работы. Как сделать электрофорную машину своими руками

Электрофорная машина работает как непрерывный источник электрической энергии. Этот прибор используют зачастую как вспомогательный для демонстраций различных электрических явлений и эффектов. Но какова его конструкция и особенности?

Немного из истории изобретения

Электрофорная машина разработана в далеком тысяча восемьсот шестьдесят пятом году Августом Теплером, немецким физиком. Что любопытно, совершенно независимо другой ученый-экспериментатор Вильгельм Гольц изобрел подобную конструкцию, но даже более совершенную, так как его аппарат позволял получить большие значения разностей потенциалов и мог служить источником постоянного тока. К тому же гольцевская машина была намного более простой в конструкции. В конце девятнадцатого века английский экспериментатор в области электричества и механики Джеймс Вимшурст усовершенствовал агрегат. И по сегодняшний день именно его вариант (пусть и чуть более современный) используется для демонстраций электродинамических опытов благодаря способности создавать огромную разность потенциалов между коллекторами. Электрофорная машина была улучшена уже в сороковых годах двадцатого века ученым по фамилии Иоффе, который разработал новый тип электростатических генераторов для осуществления питания рентгеновской установки. Хотя машину Вимшурста сейчас не используют для непосредственной задачи добычи электрической энергии, она является историческим экспонатом, который иллюстрирует историю развития инженерной мысли и научно-технического прогресса.

Конструкция электрофорной машины

Этот аппарат состоит из двух дисков, которые вращаются навстречу друг другу. Работа электрофорной машины как раз и заключается в осуществлении такого двойного обоюдного вращения. На дисках расположены токопроводящие изолированные друг от друга сегменты. С помощью обкладок сторон обоих дисков образовываются конденсаторы. Именно поэтому электрофорная машина иногда называется конденсаторной. На дисках расположены нейтрализаторы, которые отводят заряды от противоположных элементов дисков на землю с помощью щеток. Коллекторы находятся слева и справа. Именно на них поступают снятые гребенками с заднего и переднего дисков генерируемые сигналы.

Что такое банки Лейдена?

Во многих случаях заряды накапливаются на конденсаторах. Их называют банками Лейдена. После этого возможно воспроизведение намного более сильных разрядов и искр. Внутренние обкладки каждого конденсатора соединяются с кондукторами по отдельности. Щетки, которые касаются секторов дисков, объединены с внутренними обкладками банок Лейдена. Вся конструкция на сегодняшний день монтируется на пластмассовых стойках. Вместе с лейденовскими банками части машины закрепляются на подставке из дерева. Учитывая наглядность конструкции, электрофорная машина своими руками может быть сделана достаточно просто. Даже человек, который не имеет специального технического образования, может ее собрать и эксплуатировать в свое удовольствие.

На чем основана работа электрофорной машины?

Использование взаимного усилия обоих дисков – именно этот принцип является основным в данном устройстве. Эффект возникновения разности потенциалов, а затем разрядов и искр достигается правильным расположением секторов. Конечно, существуют разработки, использующие и чистые диски, но подобный коэффициент полезного действия они не выдают. Такие конструкции часто применяются в небольших учебных учреждениях. Расстояние между дисками у такого прибора, как электрофорная машина, играет важнейшую роль и оказывает существенное влияние на достижение необходимого напряжения на конденсаторах.

Каков принцип работы аппарата?

Электрофорная машина с момента ее изобретения (а это начало восемнадцатого века) пережила много изменений. Но основная идея осталась. Основой конструкции машины являются диски с наклеенными обкладками (металлическими полосами). Приложив определенную механическую силу с помощью ременной передачи, их можно вращать в разные стороны, противоположные друг другу. На обкладке одного диска возникает положительный заряд. Он притянет к себе другой заряд (отрицательный). Положительный уйдет через проводник со щетками (нейтрализатор), который касается противоположной обкладки. Поворачивая диски, получаем заряды, аналогичные исходным. Но они уже будут влиять на другие обкладки. Учитывая то, что диски вращаются в противоположные стороны, заряды стекаются к коллекторам. У такого демонстрационного аппарата, как электрофорная машина, принцип работы основан именно на этом моменте. На щетках обоих дисков, которые не касаются их поверхности и находятся по краям, заряды в какой-то момент становятся настолько огромными, что в воздушном пространстве возникает пробой, и проскакивает электрическая искра. Именно поэтому к коллекторам можно присоединять дополнительные конденсаторы разных емкостей, что придаст большую красоту эффекту возникновения разряда.

Электрофорная машина Гольца

Исторический период наиболее активных экспериментальных исследований в области электрических явлений связан с появлением первых электростатических машин, действие которых позволяло получать электрическую энергию благодаря совершению механической работы.

Механическая работа заключалась во вращении определенных частей машины, при котором преодолевались силы притяжения (разноименных) и отталкивания (одноименных) электрических зарядов, присутствовавших на наэлектризованных элементах машины.

Эксперименты с подобными машинами способствовали лучшему пониманию исследователями того времени самой природы электричества и принципов электрических взаимодействий.

Создание первой электростатической машины трения историки приписывают немецкому ученому Отто фон Герике, который в 1650 году впервые создал такое устройство. Это была машина, работа которой основывалась на уже известном тогда явлении электризации тел трением. Однако машины трения обладали значительным недостатком — их работа требовала приложения больших механических усилий.

В отличие от машин трения, созданные позже электрофорные (индукционные) машины были лишены этого недостатка, поскольку для получения электрической энергии им не нужно было прямого контакта электризуемых частей с индуктором (с той частью, которая вызывала электризацию).

Так, первая электрофорная машина, то есть такая электростатическая машина, которая не требовала взаимного трения ее частей для получения электризации, была построена в 1865 году немецким физиком Августом Теплером. Изобретатель придерживался мнения, что именно электрофорные машины позволят эффективно получать электричество за счет преобразования механической энергии.

Примерно в это же время немецкий физик Вильгельм Гольц (нем. Holtz), независимо от Теплера, спроектировал более простую и более эффективную электрофорную машину, которая производила большую разность потенциалов, и даже могла служить источником постоянного тока для осветительных целей. Именно машины Гольца стали первыми электрофорными машинами, которые появились в учебных кабинетах образовательных учреждений.

Главные части машины Гольца — два стеклянных диска и металлические гребенки, предназначенные для снятия заряда. Один из дисков закреплен неподвижно, а другой может вращаться. Диски установлены на общей оси. В одном из музейных экспонатов неподвижный диск имеет диаметр 100 см, тогда как вращающийся диск — 94 см.

Неподвижный диск опирается на эбонитовую пластину и поддерживается в вертикальном положении эбонитовыми же кружками на изолирующих стойках. В неподвижном диске вырезаны окна, на задней стороне которых наклеены неполные бумажные секторы, именуемые оправами.

Оправы оканчиваются бумажными язычками, передние заостренные края которых направлены к подвижному диску и немного изогнуты. Диски, оправы и язычки покрыты гуммилаком (смолистое вещество).

Вдоль горизонтального диаметра подвижного диска, спереди, с каждой из его сторон, установлены латунные гребенки. Эти гребенки соединены с соответствующими латунными кондукторами, на концах которых установлены проводящие шары, через которые проходят латунные стержни, оканчивающиеся с внутренней стороны шариками, с наружной — деревянными (изолирующими) ручками. Стержни можно двигать, отдаляя или сближая шарики.

К кондукторам могут быть присоединены лейденские банки (внутренними обкладками), наружные обкладки которых соединяются между собой проводником. Два латунных столбика спереди машины служат для присоединения проводов, к этим столбикам можно прислонить шарики, просто наклонив кондукторы.

Передний диск приводится во вращение посредством ременной передачи и системы шкивов, соединенных с рукояткой, с помощью которой экспериментатор и приводит данный механизм в движение. Однако, прежде чем начать работу с машиной, необходимо наэлектризовать бумажные секторы (оправы) разноименными зарядами (обозначим их как р+ и р-).

Данные оправы, будучи заряжены, благодаря явлению электростатической индукции, станут воздействовать на вращающийся диск, а диск в свою очередь будет воздействовать на гребенки О и О’.

По мере вращения диска, оправа (в окне F) с зарядом р+ наведет (индуцирует) отрицательный заряд на задней части m вращающегося диска, и заряд такого же знака будет притянут из гребенки О, опять же благодаря явлению электростатической индукции. Часть диска m’ примет отрицательный заряд от гребенки О, а сама гребенка О вместе со своим кондуктором С и шариком r поэтому станут заряжены положительно.

Итак, диск электризовался отрицательно с обеих его сторон (в местах m и m’), а кондуктор на левой стороне машины — положительно. Диск продолжает вращение, и вот, части его поверхности m и m’ подходят к окну F’, расположенному на неподвижном диске справа.

Влияние установленной здесь оправы с отрицательным зарядом p- усиливается поверхностью m’, значит с гребенки О’ в сторону диска будет притянут положительный заряд. Соответственно и кондуктор С’, и шарик r’ зарядятся отрицательно. Поверхность m принимает притянутый с гребенки положительный заряд. Диск продолжает вращение и цикл повторяется.

Электростатические генераторы считаются самыми древними источниками электрического напряжения: Как устроены и работают электростатические генераторы

Что такое электрофорная машина и как она работает? Принцип действия электрофорной машины Электрофорная машина из cd

Немного из истории изобретения

В 1865 г. физик-экспериментатор из Германии Август Теплер разработал итоговые чертежи электрофорной машины. Одновременно с этим было сделано второе независимое открытие подобного агрегата немецким ученым Вильгельмом Хольцем. Главным отличием прибора была возможность получать большую мощность и разность потенциалов. Хольц считается создателем источника постоянного электрического тока.

Простая начальная конструкция применения электрофорной машины в 1883 г. была усовершенствована Джеймсом Уимсхерстом из Англии. Его модификация используется во всех физических лабораториях для наглядной демонстрации опытов.

Начальная разность потенциалов в электрофорной машине

Приветствую, дорогие друзья. На связи Тимур Гаранин. На моём канале есть ролик, посвященный электростатической индукции и работе электрофорной машины.

Один пользователь в комментариях под этим роликом задал вопрос, откуда берется начальный заряд, для того чтобы электрофорная машина запустила процесс разделения зарядов. Я решил ему ответить, объяснил, что сперва нас интересует не столько заряд сколько разность потенциалов между секторами. В машине отсутствует механизм уравновешивания потенциалов, на практике невозможно создать условий, когда у нас на секторах одинаковое количество положительных и отрицательных зарядов, более того невозможно создать условия, когда ёмкость всех секторов является одинаковой.

И не будем забывать про то, что носители заряда являются дискретными, и кроме того распределение заряда по поверхности проводника неравномерно.

Дал этому человеку ссылку на плейлист «электростатика» на моём втором канале, где даны исчерпывающие объяснения и демонстрации электростатической индукции, распределения заряда по поверхности проводника, распределение потенциала, и так дальше. Короче, дал человеку достаточно материала, чтобы он гарантированно разобрался, как происходит умножение разности потенциалов в машине Уимсхёрста.

И, что Вы думаете, он мне ответил? Он зачем-то написал мне, что он физик-теоретик, которому военный НИИ предлагал 100 млн за работу. А потом и вовсе назвал меня идиотом и послал к чёрту.

В общем, персонаж оказался сказочный. Но зато у меня возникла идея сделать вот этот ролик, в котором я объясню, откуда берётся начальная разность потенциалов между секторами, и почему машину Уимсхёрста не нужно специально электризовать перед работой.

Начнем с того, что количество положительных и отрицательных зарядов на секторах всегда будет разным. В реальных условиях невозможно сделать так, чтобы количество элементарных зарядов на секторах было одинаковым. Но кроме того, есть еще такая вещь как дискретность носителя заряда. Электрон не может поделиться пополам. Это означает, что когда мы начнём вращать диски, размыкать и замыкать сектора, электроны обязательно начнут перескакивать из одних секторов в другие сектора, тем самым увеличивая неравенство заряда.

Это очевидная причина, и она не единственная. Нас в конечном счете интересует не заряд на секторах, а разность потенциалов между ними. А потенциал объекта относительно системы измерения зависит от ёмкости этого объекта. Представьте себе что мы заряжаем зарядом одна миллионная Кулона относительно Земли шар диаметром 1м, и в таком случае его потенциал относительно Земли будет весьма невелик. А теперь мы заряжаем этим же зарядом шарик диаметром 1 см. Его потенциал относительно Земли будет очень высок.

Либо мы просто можем шар диаметром 1М сжать до диаметра 1 см, в результате чего этот шарик станет гораздо более высоковольтным. Подробнее про зависимость потенциала и напряжения от величины емкости Я уже рассказывал о своем курсе электричество, и даже здесь на YouTube есть ролик посвященный этой теме.

Так вот в электрофорной машине мало того, что у нас сектора изначально имеют разную площадь поверхности, замыкая и размыкая сектора диагональным проводником, мы всё время изменяем емкость системы секторов. Это постоянно изменяет потенциал и заставляет заряды перетекать в проводниках под действием сил электрического поля.

Вспомним ещё про одну вещь. Распределение заряда по поверхности проводника. Если бы сектора были шарообразные, то заряд распределялся бы равномерно по всей поверхности секторов. Но сектора то в реальности плоские, а это означает что весь заряд собирается по краям секторов. Если кто-то не понимает как это работает, советую посмотреть соответствующие ролики в плейлисте электростатика.

Так вот, просто проводя контактом диагонального проводника от края к центру и от центра к краю, мы уже заставляем заряды перетекать из сектора или в сектор.

Но даже если представить, что наш прибор создан какими-то непостижимым высшими силами, и у него абсолютно одинаковые сектора, с абсолютно одинаковой емкостью и соотношением элементарных зарядов, диагональные проводники не имеют ёмкости вообще, и распределение заряда по сектору каким-то образом уравновешенно, то всё равно, при первом же вращении дисков, машина начнет умножать разность потенциалов. Но откуда же взялась эта разность потенциалов?

Наш прибор не находится в абсолютной пустоте. Он находится в окружении других объектов, которые имеют свою емкость и свой заряд. Даже банально приближение человека к машине приведет к перераспределению заряда в проводниках под действием поля человека. И как только этот человек начнёт вращать ручку, первое же прохождение сектора приведёт к умножению этого неравенства.

А дальше разность потенциалов будет умножаться в геометрической прогрессии. Как вы помните из предыдущего ролика, на каждый сектор на первом диске своим полем воздействует сразу несколько секторов на втором диске. Поэтому разность потенциалов растет не линейно, а в геометрической прогрессии.

Давайте сделаем выводы из всего вышесказанного:

1. Поддерживать равенство потенциалов между секторами в электрофорной машине в реальных условиях невозможно

2. Благодаря тому, что заряд в проводниках начинает перемещаться под действием малейшей разности потенциалов, машина Уимсхёрста не нуждается в том, чтобы ее предварительно электризовали. В этом её большое преимущество перед машиной Бонетти, которая металлических секторов не содержит и нуждается в предварительной электризации.

На этом я закругляюсь. Надеюсь вам было интересно, и я смог донести, чем обусловлено начальное разделение зарядов в электрофорной машине.

Пишите в комментариях свои вопросы и предложения, всем удачи!

Конструкция электрофорной машины

2 соосных диска вращаются друг против друга, неся при этом простейшие конденсаторы из алюминиевых секторов. Благодаря случайным процессам в первичный момент на участке одного из сегмента образуется заряд. Вызывается явление процессом трения о воздух. Из-за симметричности конструкции нельзя заранее предсказать итоговый знак.

В конструкции используются 2 лейденовские банки. Они создают из последовательно включенных конденсаторов единую систему. Это влияет на двойное уменьшение требований к рабочему напряжению в каждой емкости. Следует подбирать одинаковые номиналы, это залог равномерного распределения рабочего напряжения.

Снять напряжение призваны индукционные нейтрализаторы. Вся конструкция напоминает металлический гребень, парящий на некотором расстоянии над диском. В точку съема заряда приходят оба диска с эквивалентными знаками внешней поверхности. Нейтрализаторы спарены. После осуществления разгрузки сильно снижается заряд сегментов. В дополнительных конструкциях щетка легко соприкасается с краем диска.

Каков принцип работы аппарата?

Электрофорная машина с момента ее изобретения (а это начало восемнадцатого века) пережила много изменений. Но основная идея осталась. Основой конструкции машины являются диски с наклеенными обкладками Приложив определенную механическую силу с помощью их можно вращать в разные стороны, противоположные друг другу. На обкладке одного диска возникает положительный заряд. Он притянет к себе другой заряд (отрицательный). Положительный уйдет через проводник со щетками (нейтрализатор), который касается противоположной обкладки. Поворачивая диски, получаем заряды, аналогичные исходным. Но они уже будут влиять на другие обкладки. Учитывая то, что диски вращаются в противоположные стороны, заряды стекаются к коллекторам. У такого демонстрационного аппарата, как электрофорная машина, принцип работы основан именно на этом моменте. На щетках обоих дисков, которые не касаются их поверхности и находятся по краям, заряды в какой-то момент становятся настолько огромными, что в воздушном пространстве возникает пробой, и проскакивает электрическая искра. Именно поэтому к коллекторам можно присоединять дополнительные конденсаторы разных емкостей, что придаст большую красоту эффекту возникновения разряда.

Принцип работы генератора статического электричества (ещё их называют электрофорные машины) заключается в том, что диски вращаются относительно друг друга в противоположные стороны и создают положительные и отрицательные заряды. При вращении дисков по мере накопления зарядов происходит разряд — молния между электродами.

Что такое банки Лейдена

Первым электрическим конденсатором, созданным учеными из Голландии Питером ван Мушенбруком, была лейденская банка. Изобретенный конденсатор имеет форму цилиндра с широким или средним горлом разного диаметра. Лейденскую банку делают из стекла. Изнутри и снаружи она оклеена специальным листовым оловом. Прикрывается изделие деревянной крышкой. Главной функцией изобретения является накопление и хранение больших зарядов.

Стимулировало создание такой банки широкое изучение электричества, общей скорости его распространения, а также свойств проводимости электроэнергии различных материалов. Благодаря ей получилось впервые добыть электрическую искру искусственным путем. Сейчас банки Лейдена применяются только как неотъемлемая часть электрофорных машин.

Каков принцип работы электрофорной машины

Из силы оператора берется энергия для смены знаков. Уже между уравнителями и щетками диски двигаются со взаимным отталкиванием навстречу друг другу. Свою роль играет количество оборотов в минуту. Повышена плотность заряда. Сильнейший заряд противолежащих дисков выталкивает остатки через отрезки медной проволоки. Из этого вытекает энергия, достаточная для смены знака.

За счет повышения показателей поверхностной плотности происходит съем заряда в приборе. В единичной точке делаются энергетические запасы в банке Лейдена, другое место служит для изменения знака. Индукционные нейтрализаторы практически не имеют отличий. Они оба выполняют общую функцию нейтрализации энергии. Общая схема:

  1. Существует 2 типа конденсаторов в конструкции: банки Лейдена, где заряд накапливается, и комбинация сегмента обоих дисков с диэлектриком и алюминиевой обкладкой.
  2. Понижением заряда алюминиевых сегментов занимаются 2 вида нейтрализаторов. Первый используется для смены знака или поляризации, второй для зарядки лейденовской банки.

Вся энергия поступает не от трения алюминия и меди или электризации воздуха. Она создается за счет принудительных наполнений конденсаторов силой кручения диска. Все процессы выполняются благодаря резкому повышению в точках съема поверхностной плотности зарядов.

На чем основана работа электрофорной машины?

Использование взаимного усилия обоих дисков — именно этот принцип является основным в данном устройстве. Эффект возникновения разности потенциалов, а затем разрядов и искр достигается правильным расположением секторов. Конечно, существуют разработки, использующие и чистые диски, но подобный они не выдают. Такие конструкции часто применяются в небольших учебных учреждениях. Расстояние между дисками у такого прибора, как электрофорная машина, играет важнейшую роль и оказывает существенное влияние на достижение необходимого напряжения на конденсаторах.

Применение электрофорной машины

С 70-х гг. машина Вимшурста не используется для непосредственной добычи электрической энергии. Сегодня она выступает историческим экспонатом, иллюстрирующим историю возникновения и развития научно-технического прогресса и инженерной мысли. Лабораторная демонстрация, для чего создают электрофорную машину, показывает различные явления и эффекты электричества.

Допустимо использование индукционных нейтрализаторов, снимая заряды с жидких диэлектриков, например нефти. На любом производстве в воздухе получить искру опасно, это может привести к пагубным последствиям, задымлению и даже взрыву.

Введение

История исследования и открытий в области электричества тесно связана с использованием разнообразных конструкций электрических машин устройств, для получения электрических зарядов, называемых также электростатическими машинами. Конструкция электростатических машин основана на принципе получения электрической энергии за счет механической работы, затрачиваемой при приведении в движение (вращение) подвижных частей машины, в первую очередь, на преодоление сил притяжения или отталкивания, действующих в каждый момент между разноименно и одноименно наэлектризованными движущимися частями машины.

Изучение принципов действия электростатических машин, подразделяемых на машины трения и электрофорные машины, способствовало лучшему пониманию природы электричества, поэтому они являлись не только устройствами для получения больших электрических зарядов, но и научно-исследовательскими стендами.

В отличие от машин трения действие электрофорных машин основано на возбуждении электричества благодаря явлению индукции, т.е. без непосредственного соприкосновения вызывающих электризацию частей машины.

В данной курсовой работе с помощью электрофорной машины я продемонстрирую изучение основ электродинамики и электростатики, характер распределения зарядов на поверхности проводника, введение понятия «электроёмкость» с помощью электрофорной машины.

Конструкция электрофорной машины

Первая электростатическая машина появилась около 1650 г. Ее сконструировал немецкий ученый, бургомистр Магдебурга Отто фон Герике. Работа этой машины основывалась на явлении электризации тел трением. В дальнейшем было создано большое количество разнообразных конструкций электрических машин трения, но все они имели общий существенный недостаток: работа с такими машинами требовала приложения очень больших физических усилий.

Электрофорная машина была создана в 1865 немецким физиком-экспериментатором Августом Теплером. Одновременно с Теплером и независимо от него электрофорную машину изобрёл другой немецкий физик Вильгельм Гольц (1836-1913). Машина Гольца по сравнению с машиной Теплера позволяла получать большую разность потенциалов и могла использоваться в качестве источника постоянного электрического тока. В то же время она имела более простую конструкцию. Между 1880 и 1883 годом её усовершенствовал английский изобретатель Джеймс Вимшурст. Используемые в настоящее время для демонстраций электрофорные машины представляют собой модификации машины Вимшурста.

Электростатика — раздел электродинамики изучающей взаимодействие неподвижных электрических зарядов. В процессе изучения этой науки в качестве демонстрационного вспомогательного прибора используют электрофорную машину или генератор Вимшурста. Она предназначена для получения больших зарядов и высоких разностей потенциалов. Используя явление электромагнитной индукции на полюсах машины накапливаются электрические заряды, а разность потенциалов на разрядниках достигает нескольких сотен тысяч вольт. Ее прототип был создан в 1865 году. Машина состоит и двух вращающихся в противоположные стороны дисков. На стойках двух лейденских банок. Внешние обкладки банок соединены между собой по средствам подвижной пластины расположенной между двумя зажимами, внутренние соединены с отдельными кондукторами. Ручки кондукторов изолированы во избежание удара током при изменении положение кондукторов относительно друг друга. На внешней стороне дисков нанесены аллюминивые секторы. В соприкосновение с ними входят счетки. Диски приводятся в движение непосредственно при помощи ременной передачи (рисунок 1). Все части машины смонтированы на пластмассовых стойках, которые вместе с лейденскими банками укреплены на общей деревянной подставке. При вращении дисков один из секторов несет некий положительный заряд, а противоположный ему сектор отрицательный. Когда секторы движутся в разные стороны их потенциалы растут за счет работы выполняемой против сил их электростатического притяжения. При вращении дисков происходит разделение заряда. Между кондукторами мы видим разряд и слышим треск. Сила тока зависит от быстроты вращения дисков. Она не велика, но напряжение огромно. Поэтому не допускается контакт с кондукторами.

Принцип действия электрофорной машины

Электрофорная машина двойного вращения состоит из двух встречно вращающихся дисков. На обоих дисках находятся проводящие сегменты, которые изолированы друг от друга. Две обкладки с обоих сторон дисков вместе образуют по одному конденсатору. Из-за этого ее еще иногда называют — конденсаторной машиной. На каждом диске находятся также по нейтрализатору, который отводит заряд щетками с двух противоположных сегментов диска на землю. С левой и правой стороны дисков находятся коллекторы. В них поступают сгенерированные заряды снятые гребенками с краев как переднего, так и заднего диска. В большинстве случаев заряды собираются в конденсаторы, такие как, например, Лейденская банка для произведения более сильных искр. Перед началом эксплуатации необходимо наэлектризовать оправы разноименными зарядами (например, р +, а р’ -). Эти оправы (полоски) в соответствии с явлением индукции будут действовать на вращающийся диск В (рисунок 2), а через него на гребенки О и О’, при этом р, обладая положительным зарядом, вызовет через влияние появление отрицательного заряда в части m диска В и притянет тот же заряд из гребенки О, который отложится в части m’ диска В.

Таким образом, диск В электризуется отрицательно на обеих своих сторонах в m и m’, в то время как гребенка О и кондуктор Сг заряжаются положительно. По мере вращения диска m и m’ перемещаются к окну F’, где поверхность m’ усиливает влияние полоски р’, притягивая из гребенки С’ положительный заряд, заряжая гребенку О’ и кондуктор С’г’ отрицательно. В свою очередь m, оказывая индуктивное воздействие на полоску р’, притягивает положительный заряд, поддерживая ее в отрицательном состоянии. Затем части m и m’ снова проходят перед окном F и т.д., повторяя последовательно описанный процесс.

Добавить комментарий