Инструкция по сборке генератора статического электричества своими руками
До этого я уже создавал несколько генераторов статического электричества и эти проекты всегда вызывали сильный интерес. С ними очень весело проводить время и они позволяют делать много разных трюков с помощью электростатического разряда. Например, можно щелкать током своих друзей (и себя), заставлять руками частицы песка или пыли вести себя странно, так как они подвержены влиянию статических зарядов. Также можно притягивать струю воды, заряжать бумагу, чтобы она прилипала к стене и производить множество других магических трюков.
Вышеприложенное видео демонстрирует процесс сборки этого проекта, а текстовая версия ниже даст вам пошаговую инструкцию. Это третья версия моего генератора статического электричества, при этом она самая дешевая. Она позволяет создавать заряд примерно такой же, какой бывает, когда вы ловите искру от ковра, гуляя по нему в пижаме.
Ионизатор USB, который является основным компонентом проекта, можно найти здесь: ссылка
- Ионизатор.
- Изолированная проволока.
- Термоусадочная трубка.
- Горячий клей.
- Припой и паяльник.
- Батарейки-кнопки на 1.5v.
- Изолента.
Шаг 1: Разбираем ионизатор

Ионизаторы такого типа разбираются очень просто. Если вы будете использовать их по назначению, то корпус, скорее всего, сам треснет уже через неделю. С помощью плоскогубцев моно легко вскрыть корпус и получить доступ к плате устройства. К слову, хочу заметить, что я бы не подключал такое устройство к USB-порту компьютера. Высоковольтные устройства лучше вообще не подключать к компьютеру.
Если вы обратите внимание на последние две картинки, то заметите, что я разделил устройство на две секции. Первая часть, близкая к USB, представляет собой конвертер, который преобразует постоянный ток от USB в переменный ток, который затем проходит через крошечный трансформатор во вторую часть устройства. Вторая часть состоит из цепи четырех последовательных усилителей напряжения, которым для работы нужен переменный ток. Но в конце мы имеем постоянный ток, который направляется на белый провод.
Схема представляет как раз то, что нужно, чтобы получить статический заряд, но нам нужно модифицировать её так, чтобы она работала от батареек.
Шаг 2: Добавляем входной и выходной провода

Чтобы изменить схему до нужного нам состояния, первым делом избавимся от USB. Отвернём два ушка по бокам, и порт будет держаться лишь на 4 пинах. Прислоним паяльник сразу ко всем пинам и высвободим плату от USB порта.
На другой стороне платы есть обозначения, по которым можно определить, какая клемма предназначена для положительного заряда и какая для земли, они соответственно обозначены символами V+ и GND. Я припаял к этим клеммам по проводу, другие концы проводов будут соединены с батарейками.
На последней картинке видно, что я работаю на другой стороне платы, где я выпаиваю короткий выходной провод и припаиваю вместо него новый, значительно более длинный.
Шаг 3: Изолируем схему

Нам нужно изолировать схему от высокого напряжения, которое она будет генерировать, иначе она поджарит сама себя. Перед тем как поместить всё в термоусадочную трубку, я сперва прошелся по схеме горячим клеем, это позволило создать для проводов соединение более прочное, чем просто маленькая капелька припоя. Затем я поместил поверх устройства термоусадочную трубку и малым огнём аккуратно закрепил её на месте. Концы трубки остались не слишком зажатыми, и я также заполнил их горячим клеем. Такие ионизаторы идут со световым индикатором, чтобы вы знали, что они работают, так что я убрал немного термоусадки в том месте, где находился диод.
Шаг 4: Запитываем генератор

Источники питания USB, под которые проектируются такие устройства, дают на выходе 5 Вольт постоянного тока. Достаточно сложно найти батарейку с таким же напряжением, но обычно электроприборы могут работать в небольшом диапазоне напряжений, поэтому мы можем совместить три батарейки на 1.5V и этого вполне должно хватить.
Чтобы соединить их, оголите небольшой участок заземляющего провода (также оставив длинный изолированный его конец) и согните его, чтобы можно было придавить этот участок к отрицательной клемме батареек. Я добавил к оголенной части немного припоя и она стала держать форму.
Затем поместите пачку батареек между двумя проводами, положительный вход совместите с положительной клеммой батареек, а заземляющий провод соедините с отрицательной клеммой батареек. Небольшое количество изоленты удержит батарейки вместе и плотно прижмёт провода к их клеммам.
При желании на положительный провод можно припаять выключатель, но я решил, что устройство будет всегда включено. Для выключения я просто просовываю небольшую пластиковую пластину между батареек, и она разрывает соединение.
Шаг 5: Заключение

Устройство на данном этапе полностью работоспособно. Для того чтобы оно зарядило ваше тело (или любой проводящий объект), выходной провод должен касаться вашей кожи, в то время как конец длинного заземляющего провода должен соприкасаться с поверхностью, на которой вы стоите. Более токопроводящая поверхность позволит девайсу работать лучше, так как это даст возможность получить больший дифференциал заряда между вами и вашим окружением.
Для своих предыдущих генераторов я создавал соединения на липучках, они позволяли надежно закрепить выходные провода на теле и прикрепить заземляющий провод к низу моей подошвы.
На этом всё! Надеюсь вам понравилось читать о моём проекте.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.
Статическое электричество из воздуха на службе вашего быта
Дата публикации: 11 октября 2019
- Электричество из воздуха: схемы, прошедшие проверку качества
- Схема получения электричества из воздуха по проекту Стивена Марка
- Несколько полезных советов по технике безопасности
Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.
Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.

Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.
Электричество из воздуха: схемы, прошедшие проверку качества
Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.
Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.
В числе достоинств предлагаемого решения:
- Доступность реализации в домашних условиях;
- Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.

Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.
Схема получения электричества из воздуха по проекту Стивена Марка
Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.
Схема получения электричества из воздуха выглядит следующим образом:
- Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
- Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
- Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
- Устанавливается конденсатор на 10 микрофарад.
- Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.

Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.
Несколько полезных советов по технике безопасности
- Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
- Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.
Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.
Новости альтернативной энергетики, 1-5 февраля 2015 года
Коста-Рика прожила 75 дней на возобновляемой энергии
В Европе разрабатывают хранилища тепла
Новости альтернативной энергетики от 2.02.2016
Вам нужно войти, чтобы оставить комментарий.
Занимательные опыты со статическим электричеством
Ольга Чугреева
Занимательные опыты со статическим электричеством
Занимательные опыты со статическим электричеством
Во всех проводимых в этом разделе опытах мы используем статическое электричество. Электричество называют статическим, когда ток, то есть перемещение заряда, отсутствует. Оно образуется за счет трения объектов. Например, шарика и свитера, шарика и волос, шарика и натурального меха. Вместо шарика иногда можно взять гладкий большой кусок янтаря или пластмассовую расческу. Почему мы используем в опытах именно эти предметы? Все предметы состоят из атомов, а в каждом атоме находится поровну протонов и электронов. У протонов заряд — положительный, а у электронов — отрицательный. Когда эти заряды равны, предмет называют нейтральным, или незаряженным. Но есть предметы, например, волосы или шерсть, которые очень легко теряют свои электроны. Если потереть шарик (янтарь, расческу) о такой предмет, часть электронов перейдет с него на шарик, и он приобретет отрицательный статический заряд. Когда мы приближаем отрицательно заряженный шарик к некоторым нейтральным предметам, электроны в этих предметах начинают отталкиваться от электронов шарика и перемещаться на противоположную сторону предмета. Таким образом, верхняя сторона предмета, обращенная к шарику, становится заряженной положительно, и шарик начнет притягивать предмет к себе. Но, если подождать подольше, электроны начнут переходить с шарика на предмет. Таким образом, через некоторое время шарик и притягиваемые им предметы снова станут нейтральными и перестанут притягиваться друг к другу.
Опыт №1. Понятие о электрических зарядах.
Цель: Показать, что в результате контакта между двумя различными предметами возможно разделение электрических разрядов.
1. Воздушный шарик.
2. Шерстяной свитер.
Опыт: Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер и попробуем дотронуться шариком до различных предметов в комнате. Получился настоящий фокус!Шарик начинает прилипать буквально ко всем предметам в комнате: к шкафу, к стенке, а самое главное — к ребенку. Почему?
Это объясняется тем, что все предметы имеют определенный электрический заряд. Но есть предметы, например — шерсть, которые очень легко теряют свои электроны. В результате контакта между шариком и шерстяным свитером происходит разделение электрических разрядов. Часть электронов с шерсти перейдет на шарик, и он приобретет отрицательный статический заряд. Когда мы приближаем отрицательно заряженный шарик к некоторым нейтральным предметам, электроны в этих предметах начинают отталкиваться от электронов шарика и перемещаться на противоположную сторону предмета. Таким образом, верхняя сторона предмета, обращенная к шарику, становится заряженной положительно, и шарик начнет притягивать предмет к себе. Но если подождать подольше, электроны начнут переходить с шарика на предмет. Таким образом, через некоторое время шарик и притягиваемые им предметы снова станут нейтральными и перестанут притягиваться друг к другу. Шарик упадет.
Вывод: В результате контакта между двумя различными предметами возможно разделение электрических разрядов.
Опыт №2. Танцующая фольга.
Цель: Показать, что разноименные статические заряды притягиваются друг к другу, а одноименные отталкиваются.
1. Тонкая алюминиевая фольга (обертка от шоколада).
2. Ножницы. 3. Пластмассовая расческа. 4. Бумажное полотенце.
Опыт: Нарежем алюминиевую фольгу (блестящую обертку от шоколада или конфет) очень узкими и длинными полосками. Высыпем полоски фольги на бумажное полотенце. Проведем несколько раз пластмассовой расческой по своим волосам, а затем поднесем ее вплотную к полоскам фольги. Полоски начнут «танцевать». Почему так происходит? Волосы. о которые мы потерли пластмассовую расческу, очень легко теряют свои электроны. Их часть перешла на расческу, и она приобрела отрицательный статический заряд. Когда мы приблизили расческу к полоскам фольги, электроны в ней начали отталкиваться от электронов расчески и перемещаться на противоположную сторону полоски. Таким образом, одна сторона полоски оказалась заряжена положительно, и расческа начала притягивать ее к себе. Другая сторона полоски приобрела отрицательный заряд. легкая полоска фольги, притягиваясь, поднимается в воздух, переворачивается и оказывается повернутой к расческе другой стороной, с отрицательным зарядом. В этот момент она отталкивается от расчески. Процесс притягивания и отталкивания полосок идет непрерывно, создается впечатление, что «фольга танцует».
Вывод: Разноименные статические заряды притягиваются друг к другу, а одноименные отталкиваются.
Опыт №3. Прыгающие рисовые хлопья.
Цель: Показать, что в результате контакта между двумя различными предметами возможно разделение статических электрических разрядов.
1. Чайная ложка хрустящих рисовых хлопьев.
2. Бумажное полотенце.
3. Воздушный шарик.
4. Шерстяной свитер.
Опыт: Постелим на столе бумажное полотенце и насыплем на него рисовые хлопья. Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к хлопьям, не касаясь их. Хлопья начинают подпрыгивать и приклеиваться к шарику. Почему? В результате контакта между шариком и шерстяным свитером произошло разделение статических электрических зарядов. Часть электронов с шерсти перешло на шарик, и он приобрел отрицательный электрический заряд. Когда мы поднесли шарик к хлопьям, электроны в них начали отталкиваться от электронов шарика и перемещаться на противоположную сторону. Таким образом, верхняя сторона хлопьев, обращенная к шарику, оказалась заряжена положительно, и шарик начал притягивать легкие хлопья к себе.
Вывод: В результате контакта между двумя различными предметами возможно разделение статических электрических разрядов.
Опыт №4. Способ разделения перемешанных соли и перца.
Цель: Показать, что в результате контакта не во всех предметах возможно разделение статических электрических разрядов.
1. Чайная ложка молотого перца.
2. Чайная ложка соли.
3. Бумажное полотенце.
4. Воздушный шарик.
5. Шерстяной свитер.
Опыт: Расстелим на столе бумажное полотенце. Высыплем на него перец и соль и тщательно их перемешаем. Можно ли теперь разделить соль и перец? Очевидно, что сделать это весьма затруднительно! Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к смеси соли и перца. Произойдет чудо! Перец прилипнет к шарику, а соль останется на столе. Это еще один пример действия статического электричества. Когда мы потерли шарик шерстяной тканью, он приобрел отрицательный заряд. Потом мы поднесли шарик к смеси перца с солью, перец начал притягиваться к нему. Это произошло потому, что электроны в перечных пылинках стремились переместиться как можно дальше от шарика. Следовательно, часть перчинок, ближайшая к шарику, приобрела положительный заряд и притянулась отрицательным зарядом шарика. Перец прилип к шарику. Соль не притягивается к шарику, так как в этом веществе электроны перемещаются плохо. Когда мы подносим к соли заряженный шарик, ее электроны все равно остаются на своих местах. Соль со стороны шарика не приобретает заряда, она остается незаряженной или нейтральной. Поэтому соль не прилипает к отрицательно заряженному шарику.
Вывод: В результате контакта не во всех предметах возможно разделение статических электрических разрядов.
Опыт №5. Гибкая вода.
Цель: Показать, что в воде электроны свободно перемещаются.
1. Раковина и водопроводный кран.
2. Воздушный шарик.
3. Шерстяной свитер.
Опыт: Откроем водопроводный кран таким образом, чтобы струя воды была очень тонкой. Надуем небольшой воздушный шарик. Потрем шарик о шерстяной свитер, затем поднесем его к струйке воды. Струя воды отклонится в сторону шарика. Электроны с шерстяного свитера при трении переходят на шарик и придают ему отрицательный заряд. Этот заряд отталкивает от себя электроны, находящиеся в воде, и они перемещаются в ту часть струи, которая дальше всего от шарика. Ближе к шарику в струе воды возникает положительный заряд, и отрицательно заряженный шарик тянет ее к себе. Чтобы перемещение струи было видимым, она должна быть тонкой. Статическое электричество, скапливающееся на шарике, относительно мало, и ему не под силу переместить большое количество воды. Если струйка воды коснется шарика, он потеряет свой заряд. Лишние электроны перейдут в воду; как шарик, так и вода станут электрически нейтральными, поэтому струйка снова потечет ровно.
Вывод: В воде электроны могут свободно перемещаться.
Опыты с электричеством Опыты. Как рассказать детям про электричество без скуки? Конечно посредством опытов! Особенно про неопасное электричество, статическое.
Долгосрочный проект экспериментальной деятельности в средней группе детского сада «Занимательные опыты и эксперименты» Долгосрочный проект экспериментальной деятельности в средней группе детского сада «Занимательные опыты и эксперименты для детей» Тип проекта:.
Консультация для родителей «Занимательные опыты и эксперименты с детьми» МАДОУ № 218 «Детский сад общеразвивающего вида с приоритетным осуществлением деятельности по художественно-эстетическому направлению развития.
Мастер-класс «Занимательные опыты и эксперименты в непосредственно образовательной деятельности» Мастер – класс «Занимательные опыты и эксперименты в непосредственно образовательной деятельности»Цель мастер-класса: обучить участников.
Папка по самообразованию «Хочу все знать». Занимательные опыты и эксперименты для детей Люди, научившиеся… наблюдениям и опытам, приобретают способность сами ставить вопросы и получать на них фактические ответы, оказываясь.
«Занимательные опыты». Проект по познавательно-исследовательской деятельности Проект по познавательно- исследовательской деятельности. Тема: «занимательные опыты» Возраст детей: 3-4 года Срок реализации: 4 месяца Участники.
Проект «Занимательные опыты и эксперименты с неживой природой» Проект «Занимательные опыты и эксперименты с неживой природой» Тип проекта: исследовательски-творческий. Актуальность проекта: Мир вокруг.
Буклет для родителей на тему «Занимательные опыты с детьми в домашних условиях» Буклет «Занимательные опыты с детьми в домашних условиях» Как обуздать кипучую энергию и неуемную любознательность малыша? Как максимально.
Консультация «Занимательные опыты на кухне» Живые дрожжи Известная русская пословица гласит: «Изба красна не углами, а пирогами». Пироги мы, правда, печь не будем. Хотя, почему и нет?.
Знакомство дошкольников со статическим электричеством посредством опытно-экспериментальной деятельности Список опытов: 1. Шарики на стене 2. Шарики поссорились 3. Шарики подружились 4. Бумажное конфетти 5. Гибкая вода 6. Электричество в голове.
Как получить электричество из воздуха своими руками
Что такое атмосферное электричество
Первым всерьез занялся проблемой гениальный Никола Тесла. Источником появления свободной электрической энергии Тесла считал энергию Солнца. Созданный им прибор получал электроэнергию из воздуха и земли. Тесла планировал разработку способа передачи полученной энергии на большие расстояния. Патент на изобретение описывал предложенный прибор, как использующий энергию излучения.
Устройство Теслы было революционным для своего времени, но объем получаемой им электроэнергии был небольшим, и рассматривать атмосферное электричество как альтернативный источник энергии, было неверно. Совсем недавно изобретатель Стивен Марк запатентовал прибор, производящий электричество в больших объемах. Его тороидальный генератор может подавать электричество для ламп накаливания и более сложных бытовых приборов. Он работает длительное время, не требуя внешней подпитки. Работа этого прибора основана на резонансных частотах, магнитных вихрях и токовых ударах в металле.
На фото рабочий образец тороидального генератора Стивена Марка
Как получить электричество из воздуха в домашних условиях
Опыты Николы Тесла показали, что получать электричество из воздуха своими руками можно без особого труда. В наше время, когда атмосфера пронизана различными энергетическими полями, эта задача упростилась. Все, что производит излучения (теле- и радиовышки, ЛЭП и т. п.) создает энергетические поля.
Принцип получения электричества из воздуха очень прост: над землей поднимается пластина из металла, которая играет роль антенны. Между землей и пластиной возникает статическое электричество, которое, со временем накапливается. Через определенные временные интервалы происходят электрические разряды. Таким образом генерируется, а затем используется атмосферное электричество.
Схема получения атмосферного электричества своими руками
Такая схема достаточно проста ‑ для генерации потребуется только металлическая антенна и земля. Потенциал, который устанавливается между проводниками, со временем накапливается, хотя рассчитать его силу невозможно. При достижении определенного максимального значения потенциала происходит разряд тока, подобный молнии.
Достоинства
- Простота. Принцип легко можно апробировать дома;
- Доступность. Не нужны никакие приборы и сложные приспособления – достаточно токопроводящей пластинки.
Недостатки
- Невозможность просчитать силу тока, что может быть опасно;
- К образованному при работе открытому контуру заземления притягиваются молнии. Удар молнии может достигать напряжения 2000 вольт, а это очень опасно. Именно поэтому способ не получил широкого распространения.
Где уже используют атмосферное электричество
Тем не менее, есть примеры использования приборов, работающих по описанному принципу — ионизатор люстра Чижевского уже не первое десятилетие продается и успешно работает.
Еще одной рабочей схемой получения электроэнергии из воздуха является генератор TPU Стивена Марка. Устройство позволяет получить электроэнергию без внешней подпитки. Многими учеными эта схема апробирована, но широкого применения пока не нашла из-за своих особенностей. Принцип действия этой схемы в создании резонанса токов и магнитных вихрей, которые способствуют возникновению токовых ударов.
В настоящее время в Грузии тестируется генератор Капанадзе. Этот источник энергии также работает без внешней подпитки и добывает электричество из воздуха без дополнительных ресурсов.
На фото готовый к работе генератор Капанадзе
Выводы
Новые способы получения дешевой энергии у многих ученых вызывают опасения из-за вмешательства в процессы атмосферы и ионосферы. Их влияние на возникновение и течение жизни на Земле изучено слабо, поэтому воздействие может пагубно отразиться на состоянии планеты.
Но лично я считаю, что технология атмосферного элекричества тормозится умышленно. Более того, существует факт масштабного использования электричества из воздуха до 1917 года. На видео ниже вы сами можете убедиться в существовании электроэнергии даже в 17 веке.
Статическое электричество в природе и технике
Статическое электричество в природе. Интересные факты
1. Впервые электризация жидкости при дроблении была замечена у водопадов Швейцарии в 1 786 г. С 1913г. явление получило название баллоэлектрического эффекта. Эффект электризации наблюдается не только у водопадов на открытой местности, но и в пещерах.
Заряд воздуху у водопадов сообщают микроскопические капельки воды и молекулярные комплексы, которые при дроблении отрываются от водной поверхности и уносятся в окружающую среду.
Наиболее значительный эффект электризации воздуха наблюдается у самых больших водопадов мира — Игуассу на границе Бразилии и Аргентины (высота падения воды — 190 м, ширина потока — 1 500 м) и Виктория на реке Замбези в Африке (высота падения воды — 133 м, ширина потока -1600 м). У водопада Виктория за счет дробления воды возникает электрическое поле напряженностью 25 кВ/м.
При дроблении пресной воды в воздух переходит отрицательный заряд. Поэтому в воздухе у водопадов количество отрицательных ионов превышает количество положительных.
У небольшого водопада Учан-Су в Крыму отношение отрицательных ионов к количеству положительных равно 6,2.
2. У берегов морей воздух приобретает положительный заряд, вследствие разбрызгивания соленой воды. На поверхности морей и океанов разбрызгивание воды начинается при скорости ветра более 10м/с, когда на волнах появляются гребешки пены. Отношение положительных зарядов к отрицательным зарядам в воздухе над Черным и Азовским морями достигает при бурном море 2,04, при зыби- 1,48.
3. Покоритель Джомолунгмы Н. Тенсинг в 1953 г. в районе южного седла этой горной вершины на высоте 7,9 км над уровнем моря при -30 °С и сухом ветре до 25 м/с наблюдал сильную электризацию обледеневших брезентовых палаток, вставленных одна в другую. Пространство между палатками было наполнено многочисленными электрическими искрами.
4. Движение лавин в горах в безлунные ночи иногда сопровождается зеленовато-желтым свечением, благодаря чему лавины становятся видимыми. Обычно световые явления наблюдаются у лавин, движущихся по снежной поверхности, и не наблюдаются у лавин, проносящихся по скалам. На озерах Антарктики во время полярной ночи иногда возникает свечение при разламывании крупных масс озерного льда.
5. Молния выбирает самый короткий путь к земле, поэтому попадает в здания или в деревья. Высокие здания оборудуют металлическими полосами (прутьями), по которым электрический разряд уходит в землю. Это громоотвод. Грозовой разряд идет на землю и обратно по одному и тому же пути.
Это происходит с такой скоростью, что наш глаз видит только одну вспышку. На своем пути молния раскаляет воздух, который, быстро расширяясь, создает звуковую волну. Это вызывает громовые раскаты. Мы слышим их после того, как увидим молнию, так как звук распространяется значительно медленнее, чем свет.
Статическое электричество в технике. Когда электризация тел полезна
Статическое электричество может быть верным помощником человека, если изучить его закономерности и правильно их использовать. В технике применяют метод, сущность которого заключается в следующем.
Мельчайшие твердые или жидкие частицы материала поступают в электрическое поле, где на их поверхность «оседают» электроны и ионы, т. е. частицы приобретают заряд и далее движутся под действием электрического поля.
В зависимости от назначения аппаратуры можно с помощью электрических полей по-разному управлять движением частиц в соответствии с необходимым технологическим процессом. Эта технология уже пробила себе дорогу в различные отрасли народного хозяйства.
Маляр без кисточки
Движущиеся на конвейере окрашиваемые детали, например корпус автомобиля, заряжают положительно, а частицам краски придают отрицательный заряд, и они устремляются к положительно заряженной детали. Слой краски на ней получается тонкий, равномерный и плотный.
Действительно одноименно заряженные частицы красителя отталкиваются друг от друга — отсюда равномерность окрашивающего слоя. Частицы, разогнанные электрическим полем, с силой ударяются об изделие — отсюда плотность окраски.
Расход краски снижается, так как она осаждается только на детали. Метод окраски изделий в электрическом поле сейчас широко применяют в нашей стране.

Электрические копчености
Копчение — это пропитывание продукта древесным дымом. Частицы дыма не только придают продуктам вкус, но и предохраняют их от порчи.
При электрокопчении частицы коптильного дыма заряжают положительно, а отрицательным электродом служит, например, тушка рыбы. Заряженные частички дыма оседают на поверхности тушки и частично поглощаются ею. Все электрокопчение продолжается несколько минут. Прежде копчение считалось длительным процессом.

Электрический ворс
Чтобы получить в электрическом поле слой ворса на каком-либо материале, надо материал заземлить, поверхность покрыть клеящим веществом, а затем через заряженную металлическую сетку, расположенную над этой поверхностью, пропустить порцию ворса. Ворсинки быстро ориентируются в поле и, распределяясь равномерно, оседают на клей строго перпендикулярно поверхности.
Так получают покрытия, похожие на замшу или бархат. Легко получить разноцветный узор, заготовив порции разного по цвету ворса и несколько шаблонов, которыми в процессе электроворсования прикрывают поочередно отдельные участки изделия. Так можно сделать многоцветные ковры.
Как ловят пыль
Чистый воздух нужен не только людям и особо точным производствам. Все машины из-за пыли преждевременно изнашиваются, а каналы их воздушного охлаждения засоряются. Кроме того, часто пыль, улетающая с отходящими газами, представляет собой ценное сырье. Очистка промышленных газов стала необходимостью. Практика показала, что с этим хорошо справляется электрическое поле.
По центру металлической трубы устанавливают проволоку Б, которая служит одним из электродов, вторым являются стенки трубы В. В электрическом поле газ в трубе ионизируется. Отрицательные ионы «прилипают» к частицам дыма, поступающим вместе с газом через вход А, и заряжают их.
Под воздействием поля эти частицы движутся к трубе и осаждаются на ней, а очищенный газ направляется к выходу Д. Трубу время от времени встряхивают, и уловленные частицы поступают в бункер Г. Электрические фильтры на крупных тепловых электростанциях улавливают 99% золы, содержащейся в выходных газах.

Смешение веществ
Если мелкие частицы одного вещества зарядить положительно, а другого — отрицательно, то легко получить их смесь, где частицы распределены равномерно. Например, на хлебозаводе теперь не приходится совершать большую механическую работу, чтобы замесить тесто.
Заряженные положительно крупинки муки воздушным потоком подаются в камеру, где они встречаются с отрицательно заряженными капельками воды, содержащей дрожжи. Крупинки муки и капельки воды, притягиваясь друг к другу, образуют однородное тесто.
Можно привести много других примеров полезного применения статической электризации. Основанная на этом явлении технология удобна: потоком заряженных частиц можно управлять, изменяя электрическое поле, а весь процесс легко автоматизировать.