Форма ЭЛ-8. Акт проверки заземления
Акт (протокол) проверки заземления оборудования на предприятиях используется при проведении приемо-сдаточных испытаний, контрольных, профилактических и т.д. Проверку сопротивления заземлителей и заземляющих устройств должна проводить организация, имеющая специальную лицензию для таких мероприятий. Форма данного протокола — ЭЛ-8, в профессиональных кругах его называют акт проверки заземления. Рассмотрим, как правильно его заполнить.
Коротко о проверках
Согласно ПТЭЭП, периодичность проверок контуров заземления (заземляющих устройств) должна составлять 1 раз в 6 лет. Визуальный осмотр видимых частей устройства должен проводиться 1 раз в полгода. Можно проводить проверки и чаще, особенно если есть подозрения на неисправность заземляющего оборудования.
Проверку сопротивления заземления обычно проводят в комплексе с другими испытаниями. Ее задача — оценить защитные свойства электрического оборудования.
Проводить проверку могут специальные организации, имеющие разрешения для таких работ, сертифицированные в Минэнерго, имеющие специальные лаборатории и приборы для проведения измерений. Сотрудники должны пройти соответствующее обучение, проверку на знания по охране труда, медицинский осмотр.
К сведению! Заземляющее устройство (контур заземления) необходим для защиты работников от поражения электрическим током из-за поломки электрооборудования. Если система работает, то ток по заземлителю будет идти в течение короткого промежутка времени. И опасная ситуация на предприятии не случится. Поэтому важно контролировать состояние заземляющих устройств.
Заполняем акт (протокол проверки заземления)
В шапке документа должны быть указаны данные о компании-исполнителе (наименование, номер свидетельства о регистрации, номер лицензии Минэнерго, до какого срока действительны обе лицензии) и о компании-заказчике (наименование, адрес объекта, сроки выполнения работ).

Затем вносят следующие данные:
- номер протокола;
- температуру и влажность воздуха:
- атмосферное давление;
- цели проверки (приемо-сдаточные, сличительные, контрольные испытания и т.д);
- наименование документов, на соответствие которым проведены испытания;
- вид и характер грунта;
- для какой электроустановки применяется заземляющее устройство;
- режим нейтрали;
- удельное сопротивление грунта;
- расчетный ток замыкания на землю.
Далее заполняют таблицу, куда вносят результаты проведенной проверки:
- Номер по порядку.
- Назначение заземлителя.
- Место проверки.
- Расстояние до потенциальных и токовых электродов.
- Сопротивление заземлителей.
- Коэффициент сезонный.
- Заключение: соответствует сопротивление нормам ПУЭ или нет.

В следующей таблице указывают, какими приборами были проведены измерения. Вносят такую информацию:
- Номер по порядку.
- Тип.
- Заводской номер.
- Метрологические характеристики приборов, такие как диапазон измерения и класс точности.
- Даты поверок приборов: когда была последняя и когда будет следующая.
- Номер свидетельства или аттестата поверки прибора.
- Наименование органа, который выдал аттестат поверки прибора.
Затем пишут заключение: соответствует ли сопротивление нормам или нет. В конце расписываются и указывают свои должности исполнители и сотрудник, проверивший правильность проведения мероприятия и заполнение протокола. Как правило, нужно три подписи: инженеров и начальника эл. лаборатории.
Проверка металлосвязи

Проверка металлосвязи — это проверка наличия цепи заземления между защитными PE-проводниками и нетоковедущими проводящими частями заземляемого устройства и измерение переходного сопротивления в точках контакта.
Чтобы пояснить, что является нетоковедущей частью, обратимся за определением к государственному стандарту:
Проверка металлосвязи, ОСУП и ДСУП
Металлические предметы, которые способны, но не должны проводить электрический ток, должны быть заземлены. Электрический потенциал на таких предметах должен быть уравнен с потенциалом земли, то есть равняться нулю.
Решить эту задачу призвана система уравнивания потенциалов (СУП). Различают основную систему уравнивания потенциалов (ОСУП) и дополнительную систему уравнивания потенциалов (ДСУП).
В соответствии с ПУЭ, п. 1.7.82 ОСУП соединяет приходящие магистральные заземляющие проводники, заземлители заземляющего устройства и системы молниезащиты, главную заземляющую шину, естественные заземлители, такие как металлоконструкции здания и трубопроводы газо- и водоснабжения, канализации и отопления, металлические части системы вентиляции и кондиционирования.
В соответствии с ПУЭ, п. 1.7.83 ДСУП соединяет между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах TT и IT , включая защитные проводники штепсельных розеток.
ДСУП включает в себя дверцы и корпуса металлических электрощитов, корпуса светильников, электродвигателей и другого электрооборудования, заземляющие контакты розеток и т.д. Все эти предметы подключаются защитными проводниками к PE-шине электрощита. Как правило, металлические предметы соединяются с PE-шинами коробок уравнивания потенциала, а те уже, в свою очередь, с PE-шиной щита.
Итак, поговорим про измерение сопротивления металлосвязи. Все нетоковедущие части должны быть соединены в одну цепь и иметь электрический потенциал, равный потенциалу земли. Наличие и непрерывность этой цепи необходимо регулярно проверять качественно и количественно, измеряя переходные сопротивления контактных соединений. Это и есть проверка наличия цепи между заземленными установками и элементами заземленных установок.
Для краткости специалисты называют наличие цепи между заземленными установками и элементами заземленной установки металлосвязью, а проверку наличия цепи, соответственно, проверкой металлосвязи. Смысл проверки заключается в измерении переходных сопротивлений в местах соединения заземляемых элементов электроустановки с заземляющими проводниками.
В ходе измерения металлосвязи значение переходного сопротивления сравнивается с максимально допустимым. В соответствии с ПТЭЭП полученное значение не должно превышать 0,05 Ом:

Для проведения проверки подойдет микроомметр или омметр, обладающий достаточной чувствительностью, чтобы измерять значения с разрешением 0.01 Ом.
Контактное соединение — это две сцепленные металлические поверхности. Даже если они тщательно обработаны, отшлифованы и отполированы, между ними есть микроскопические шероховатости. Площадь соприкосновения поверхностей определяется множеством точек, а их количество зависит от силы прижатия контактов, температуры, наличия загрязнений, геометрической формы контактов и т.д. Также встречаются случаи небрежного, неквалифицированного монтажа — отсутствия наконечников или опайки многожильных проводов, гроверных шайб, подсоединения нескольких проводников на один контакт, присоединение алюминиевых проводников к медной шине и т.п.
Со временем, под влиянием вибраций, температурных колебаний, коррозии, текучести металла (в большей степени алюминия) и других механических воздействий затяжка болтовых соединений ослабевает, что приводит к снижению площади соприкосновения и росту переходного сопротивления. Время от времени такие соединения необходимо проверять и подтягивать.
Помимо этого, переходные сопротивления увеличиваются по мере окисления контактов. Это объясняется тем, что окисные пленки имеют очень высокое удельное электрическое сопротивление. При прочих равных условиях, на поверхности алюминиевых проводников окисные пленки образуются быстрее, чем на медных. Нарушение непрерывности цепи заземления, а также рост переходных сопротивлений могут привести к поражению людей электрическим током, выводу оборудования из строя, увеличению риска возгораний, а также значительных энергетических потерь, за счет появления токов утечки, недостаточных для срабатывания защитной аппаратуры.
Что такое металлосвязь и как ее замеряют
Что такое металлосвязь и как ее замеряют?
Наличие защитного заземления – одно из основных требований электробезопасности. Надежность заземляющих элементов контролируют специалисты электролаборатории, проводя измерение металлосвязи. Согласно действующим нормам и правилам, такая проверка обязательна, если на объекте производился ремонт электрического оборудования, переоснащение или монтажные работы. Что скрывается под термином «металосвязь» и зачем проводятся ее измерения, мы подробно расскажем в этой публикации.
Правила составления протокола
Как и любой другой официальный акт, отчет испытаний металлосвязи регламентируется нормативными и техническими документами, а именно:
- ПУЭ-7, раздел 1.7;
- ПТЭЭП, пп.26, 28;
- ГОСТ Р 50571.16;
- ГОСТ 12.2.0-75, п.3.3.7.
Эти документы определяют многие параметры, в том числе внешний вид бланка, вносимые в него данные, срок действия протокола и периодичность испытаний. Также в этих документах обозначено, кто именно имеет право проводить измерения, и каким образом сотрудник электроизмерительной лаборатории должен заверить протокол.
ГОСТ Р 50571.16 вместе с ПТЭЭП регламентируют нормы проведения испытаний.
Соответствие этим нормам и правилам определяет достоверность диагностики, а также уменьшает вероятность погрешности и искажения реальных значений.
Кроме того, соответствие нормам является подтверждением подлинности протокола.
НОРМЫ СОПРОТИВЛЕНИЯ
Москва
Дата введения 01.01.80
Настоящий стандарт распространяется на станционные и линейные сооружения установок проводной связи, радиорелейные станции, радиотрансляционные узлы проводного вещания (ПВ), установки избирательной железнодорожной связи и антенн систем коллективного приема телевидения (СКПТ), для которых оборудуют стационарные заземляющие устройства, и устанавливают нормы сопротивления заземляющих устройств, обеспечивающих нормальную работу сооружений и установок, перечисленных выше, а также безопасность обслуживающего персонала.
Стандарт не распространяется на заземляющие устройства, которые предусматриваются в технике специального назначения.
Термины, применяемые в настоящем стандарте, и их определения приведены в приложении.
(Измененная редакция, Изм. № 2).
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. К рабоче-защитному или защитному заземляющему устройству при помощи заземляющих проводов кратчайшим путем должны быть подключены:
один из полюсов электропитающей установки;
нейтраль трансформаторов, вывод источника однофазного тока трансформаторной подстанции или собственной электростанции, питающей оборудование предприятий связи, радиорелейную станцию или станцию ПВ;
металлические части силового, стативного и коммутаторного оборудования;
металлическая опорная эквипотенциальная поверхность электронных телефонных станций;
металлические трубопроводы водопровода и центрального отопления и других металлических конструкций внутри здания;
экраны аппаратуры и кабелей;
металлические оболочки кабелей, элементы схем защиты, молниеотводы;
антенны СКПТ, подлежащие молниезащите в соответствии с нормативно-технической документацией (далее НТД).
Число заземляющих проводов и порядок подключения к ним аппаратуры и оборудования устанавливают в НТД на аппаратуру конкретного вида.
(Измененная редакция, Изм. № 2).
1.2. На предприятиях связи следует оборудовать защитное заземляющее устройство, если отсутствуют соединительные линии и цепи дистанционного питания аппаратуры, использующие землю в качестве провода электрической цепи.
Требования к защитным заземлениям и занулениям — по ГОСТ 12.1.030.
(Измененная редакция, Изм. № 1).
1.3. На предприятиях связи следует оборудовать одно рабоче-защитное заземляющее устройство, если заземлен «минус» источника тока дистанционного питания, (при этом цепи дистанционного питания допускается включать по схеме «провод-земля») или заземлен «плюс» источника тока, но отсутствуют цепи дистанционного питания по схеме «провод-земля». При этом соединительные линии могут использовать «землю» в качестве провода электрической цепи. Контур рабоче-защитного заземляющего устройства при наличии цепей дистанционного питания должен иметь два самостоятельных ввода в здание (до щитка заземления).
На предприятиях следует оборудовать обособленные рабочее и защитное заземляющие устройства, если имеются цепи дистанционного питания по схеме «провод-земля» с заземлением «плюса» источника тока.
1.4. Нейтраль трансформаторов, вывод источника однофазного тока трансформаторной подстанции или собственной электростанции, питающей оборудование предприятий связи, радиорелейную станцию или станцию ПВ, должны быть присоединены к защитному или рабоче-защитному заземляющему устройству. При этом заземляющее устройство для указанного выше предприятия и для трансформаторной подстанции должно быть общим, если расстояние между предприятием и трансформаторной подстанцией менее 100 м.
Сопротивление общего заземляющего устройства должно соответствовать нормам сопротивления заземляющих устройств для каждой подключаемой установки.
Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или вывод источника однофазного тока, при удельном сопротивлении грунта до 100 Ом·м не должно быть более, Ом:
2 — установок напряжением 660/380 В;
4 — установок напряжением 380/220 В;
8 — установок напряжением 220/127 В.
При удельном сопротивлении грунта r более 100 Ом·м допускается повысить значение сопротивления заземляющего устройства в r/100 раз, но не более чем в десять раз, а также не более значений, указанных в табл. Таблица 1-Таблица 3, Таблица 5 и в пп. Пункт 2.1.5, Пункт 2.4.5, Пункт 2.7.2.
1.3, 1.4. (Измененная редакция, Изм. № 2).
1.4а. Сопротивление защитного или рабоче-защитного заземляющего устройства должно быть обеспечено с учетом использования естественных заземлителей (проложенные под землей металлические трубы, металлические конструкции, арматура зданий и их бетонных фундаментов и другое, за исключением трубопроводов горючих и взрывоопасных смесей, канализации, центрального отопления и бытового водопровода, расположенных вне здания, в котором размещено оборудование предприятия связи или станция ПВ).
(Введен дополнительно, Изм. № 2).
1.5. Конструкция искусственных заземлителей или различных контуров заземляющего устройства, марка и сечение соединяющих проводников от заземляющего устройства к щитку заземления, перечень аппаратуры, оборудования и элементов защиты, присоединяемых к заземляющему устройству, способы присоединения проводок и их число, методика измерения сопротивления заземляющих устройств и удельного сопротивления грунта устанавливают в НТД на аппаратуру конкретного вида.
(Измененная редакция, Изм. № 2).
1.6. Расстояние между отдельными неизолированными частями разных заземляющих устройств (между рабочим, защитным, измерительным и др.) на участке до ввода в здание не должно быть менее 20 м.
1.7. Сопротивление измерительного заземляющего устройства не должно быть более 100 Ом в грунтах с удельным сопротивлением до 100 Ом·м и 200 Ом — в грунтах с удельным сопротивлением более 100 Ом·м.
1.8. Сопротивление линейно-защитных заземляющих устройств для линий связи и проводного вешания на участках опасного влияния линий электропередачи, электрифицированных железных дорог, а также при влиянии радиостанций и импульсных воздействиях (исключая грозовые разряды), определенное расчетом в соответствии с требованиями НТД, не должно превышать значений, устанавливаемых настоящим стандартом.
(Измененная редакция, Изм. № 2).
1.9. При эксплуатации заземляющих устройств следует проверять их сопротивления с периодичностью:
два раза в год — летом (в период наибольшего просыхания грунта) и зимой (в период наибольшего промерзания грунта) — на междугородных, городских и сельских телефонных станциях, телеграфных станциях, телеграфных трансляционных, оконечных и абонентских пунктах;
раз в год — летом (в период наибольшего просыхания грунта) — на радиорелейных станциях, на станциях и подстанциях радиотрансляционных узлов;
раз в год — перед началом грозового периода (апрель — май) — в необслуживаемых усилительных пунктах (НУП) и регенерационных пунктах (РП) междугородной, городской и сельской связи; для контейнеров аппаратуры систем передачи (ИКМ-30 и др.);
раз в год — перед началом грозового периода — на кабельных и воздушных линиях связи и радиотрансляционных сетей, у кабельных опор и опор, на которых установлены средства защиты, на абонентских пунктах телефонных и радиотрансляционных сетей, у понижающих трансформаторов таксофонных кабин;
не реже раза в год (перед началом грозового периода) — для антенн систем коллективного приема телевидения.
Дальше на Нормы сопротивления. Нормы сопротивления заземляющих устройств для междугородных телефонных станций и оконечных пунктов избирательной железнодорожной связи. Нормы сопротивления заземляющих устройств для необслуживаемых усилительных пунктов междугородной связи и промежуточных пунктов избирательной железнодорожной связи. Нормы сопротивления заземляющих устройств для телеграфных станций и телеграфных трансляционных оконечных и абонентских пунктов. Нормы сопротивления заземляющих устройств для городских телефонных станций и станций местной железнодорожной связи
Вернуться к списку нормативных документов электросвязи 
Методика измерения сопротивления защитного заземления.
Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.
Знаковая и цветовая маркировка элементов ЗС
В соответствии с требованиями ГОСТа Р 50462 проводники и шины электросетей с заземленной нейтралью должны обозначаться маркировкой «РЕ» с добавлением штриховой линии из перемежающихся жёлтых и зелёных полосок на концевых участках трассы. Одновременно с этим шины рабочего «нуля» обозначаются голубым цветом и маркируются как «N».

В тех схемах, где нулевые рабочие проводники используются в качестве элемента защитного заземления с подключением на заземляющее устройство, при их обозначении используется голубой цвет.
Одновременно с этим им присваивается маркировка «PEN» и добавляются чередующиеся желтые и зеленые штрихи на конечных участках схемных обозначений.
Необходимо отметить, что строгое соблюдение всех положений и требований ГОСТа и ПУЭ позволит потребителю организовать безопасную эксплуатацию имеющегося в его распоряжении оборудования.
Что такое металлосвязь и как ее замеряют?
Наличие защитного заземления – одно из основных требований электробезопасности. Надежность заземляющих элементов контролируют специалисты электролаборатории, проводя измерение металлосвязи. Согласно действующим нормам и правилам, такая проверка обязательна, если на объекте производился ремонт электрического оборудования, переоснащение или монтажные работы. Что скрывается под термином «металосвязь» и зачем проводятся ее измерения, мы подробно расскажем в этой публикации.
Что такое «металлосвязь»?
Под данным термином принято понимать связь (электрическую цепь), образованную электроустановкой и заземлителем. Основное требование к металлосвязи – непрерывность цепи заземления. Нарушение этого условия грозит образованием высокой разности потенциалов в цепях электроустановки, что представляет угрозу для жизни и может повлечь за собой выход из строя оборудования.
Надежный контакт заземлителя и объекта заземления обеспечивает низкую величину переходного сопротивления
Со временем может наблюдаться рост переходных сопротивлений в цепи заземления, что приводит к образованию дефектов металлосвязи, давайте разберемся с природой этого явления.
Чем вызван рост переходного сопротивления?
Под переходными контактами подразумеваются соприкасающиеся металлические элементы. Добиться их идеальной полировки невозможно, все равно на поверхности будут присутствовать бугорки и вмятины микроскопического размера. Площадь контактируемых поверхностей изменяется от воздействия различных внешних факторов (температура, сила прижатия, загрязнение поверхности и т.д.), что ведет к увеличению переходного сопротивления. На представленных ниже фотографиях медного контакта, сделанных при помощи электронного микроскопа, видно образование на поверхности пленки из оксида меди.
Поверхность медного контакта, увеличенная микроскопом
Такая оксидная пленка обладает диэлектрическими свойствами, они хоть и не велики, но этого может оказаться достаточно, чтобы нарушить металлосвязь. В результате соединение будет нагреваться и рано или поздно приведет к отгоранию контакта, что незамедлительно отразится на качестве металлосвязи. Не менее распространенная причина – человеческий фактор, именно поэтому после монтажных работ требуется проводить измерение металлосвязи.
Зачем проверять металлосвязь?
Принимая во внимание вышеизложенную информацию, можно указать следующие причины для проверки металлосвязи:
- Контроль непрерывности цепи заземления. Он включает в себя как электроизмерения, так и осмотр защитных проводников и других элементов заземления, на предмет их целостности.
- Измерение сопротивления переходных контактов (производится между электроустановкой и заземлителем), а также общих параметров цепи.
- Проверяется разность потенциалов между корпусом заземленной электроустановки и заземлителем. Проверка осуществляется в рабочем режиме и выключенном состоянии.
Как видим, основная цель проверки – осуществление измерений параметров заземляющих цепей, поскольку именно они характеризуют качество металлосвязи, а соответственно, и электробезопасность установки.
Методика измерения металлосвязи
В соответствии с требованиями ПУЭ металлические элементы электроустановок подлежат заземлению. Замеры металлосвязи производятся между главной заземляющей шиной и элементом, подлежащим проверке. По нормам сопротивление контактов в одном переходе должно быть 0,01 Ом ± 20%.
Если измерительный прибор подтверждает наличие качественного соединения, выполняется проверка следующего узла. Когда между заземлителем и заземленной электроустановкой несколько переходов, то их суммарное сопротивление не должно выходить за пределы 0,05 Ом.
Измерение сопротивления переходных контактов
Если сопротивление превышает допустимые нормы, следует проверить состояние контактов, зачистить их, соединить и произвести повторные измерения.
Большинством электролабораторий замеры металлосвязи проводятся по следующему алгоритму:
- Осуществляется визуальный осмотр контактов заземляющих проводников. Эффективны при поисках «плохого» контакта специальные приборы – тепловизоры, они быстро позволяют обнаружить проблемное соединение.
- Сварочные соединения проверяются на прочность путем применения механической нагрузки.
- Все заземленные элементы конструкции тестируются на наличие металлосвязи.
- Проверка наличия электрического тока на заземленных элементах.
- Полученные результаты фиксируются в специальном протоколе.
Приведенная методика измерений доказала свою эффективность.
Нормы и правила
Согласно нормам ПУЭ заземляющие проводники, а также используемые для выравнивания потенциалов, необходимо надежно соединять, чтобы обеспечить наличие непрерывности цепи заземления. При этом для стальных проводников предписывается сварочное соединение, другие способы контакта допускаются только в том случае, если имеется защита от разрушающего воздействия воздушной среды. При использовании болтовых соединений, должны быть приняты соответствующие меры, не позволяющие ослабевать контактному соединению.
Все соединения цепи заземлителя и заземленного устройства должны быть расположены таким образом, чтобы к ним имелся свободный доступ, поскольку должен производиться осмотр, с целью проверки непрерывности электрического соединения. Исключение их этого правила – герметизированные контакты.
В Правилах также указано, что для контакта с заземляющими устройствами могут выполняться болтовыми или сварочными соединениями. Если устройства электроустановок подвержены сильной вибрации или их часто перемещают на другое место, то применяются гибкий защитный провод.
Более детальную информацию о нормах и правилах, можно получить в ПУЭ (р. 1.7.).
Периодичность
Согласно норм ПТЭЭП и ПУЭ, испытания металлосвязи проводится по графику, определенному техническим отделом объекта. Как правило, в этом случае руководствуются табл. 37 п. 3.1 ПТЭЭП, где установлена следующая периодичность измерения металлосвязи:
- В помещениях и объектах, относящихся к повышенной категории опасности, замеры переходных сопротивлений в заземляющих цепях должны проводиться ежегодно, при других обстоятельствах — не реже одного раза на протяжении трех лет.
- Для лифтового и подъемного оборудования – 1 год.
- Стационарным электроплитам – 1 год.
Как правило, проверка металлосвязи производится совместно с другими видами электроизмерений (сопротивления изоляции, проверка целостности электропроводки и т.д.).
Помимо этого, обязательные измерения металлосвязи проводятся в следующих случаях:
- Если производился ремонт или переоснащение электрооборудования.
- При испытаниях новых электроустановок.
- После проведения монтажных работ.
Приборы для измерения
Учитывая, что измерения металлосвязи проводятся на уровне сотых Ома, то обычные измерительные приборы, например, мультиметры, для этой цели не подходят. Когда проводят замеры сопротивления заземления, используют более точные приборы, достаточно чувствительные, чтобы измерять сопротивления малого уровня.
Прибор для измерения заземления Metrel MI3123
Большинство таких устройств оснащены дополнительными функциями, например, представленный на рисунке прибор Metrel MI3123 может также измерять электропроводимость грунта и тока утечки.
Фиксация результатов в протоколе измерения
Все результаты измерений заносятся в специальный протокол испытаний. Данные фиксируются в таблице, с указанием наименования каждого осмотренного соединения. В отчете также приводится информация о количестве осмотренных узлов, их местоположении и отображается максимальное значение общего сопротивления контактов защитной цепи.
Если в процессе испытаний обнаружено отсутствие металлосвязи, информация об этом обязательно фиксируется в документе и одновременно в приложении к протоколу (дефектной ведомости).
Кратко о профилактике.
Регулярно проводить замеры металлозаземления, не значит отказаться от профилактики. Чтобы обеспечить непрерывность защитных цепей необходимо регулярно проверять, в каком состоянии находятся контактные соединения, и при необходимости подтягивать их. Не менее важно очищать контакты пыли, окисной пленки и грязи.
При обнаружении наличия электрического напряжения на одном из элементов конструкции, необходимо позаботится о ее качественном заземлении. В противном случае возрастает риск возникновения нештатной ситуации.
Не стоит экономить на проверке качества устройства защитного заземления, поскольку потери могут стать более затратными, чем оплата вызова электролаборатории.
Важно ознакомиться и прочитать:
Методика измерения переходного сопротивления
- Нормативные ссылки.
В данной методике использованы ссылки на нормативные документы:
- Правила эксплуатации электроустановок потребителей М.: Энергоатомиздат, 1992.
- Правила устройства электроустановок (ПУЭ). Изд. 6 с изменениями и дополнениями.
- Правила устройства электроустановок (ПУЭ). Изд.7. Раздел 6. Раздел 7, гл. 7.1,
- Правила по охране труда при эксплуатации электроустановок. (Приказ министерства труда и социальной защиты РФ от 24.07.2013 г. №328н).
- ГОСТ Р 50571.16-99 «Приемо-сдаточные испытания».
- ГОСТ Р 8.563-2009 «Методики выполнения измерений».
- ГОСТ Р 50571.1-93 «Электроустановки зданий. Основные положения».
- ГОСТ Р 50571.3-94 «Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током».
- ГОСТ Р 50571.10-96 «Электроустановки зданий. Выбор и монтаж электрооборудования. Заземляющие устройства и защитные проводники.»
- ГОСТ Р 50571.16-99 «Электроустановки зданий. Часть 6. Испытания. Приемо-сдаточные испытания».
- Инструкция по эксплуатации «Измеритель сопротивления заземления ИС-10»
- Термины и определения.
В настоящем стандарте используются термины и определения, принятыми согласно ПУЭ изд. 6 и комплекса стандартов ГОСТ Р 50571.
3.1 Электрооборудование — любое оборудование, предназначенное для производства, преобразования, передачи, распределения или потребления электрической энергии, например: машины, трансформаторы, аппараты, измерительные приборы, устройства защиты, кабельная продукция, электроприемники.
3.2 Электроустановка — любое сочетание взаимосвязанного электрооборудования в пределах данного пространства или помещения.
3.3 Электрическая цепь — совокупность электрооборудования, соединенного проводами и кабелями, через которое может протекать электрический ток.
3.4 Защитный проводник (РЕ) — проводник, применяемый для каких-либо защитных мер от поражения электрическим током в случае повреждения и для соединения открытых проводящих частей:
— с другими открытыми проводящими частями;
— со сторонними проводящими частями;
— с заземлителями, заземляющим проводником или заземленной токоведущей частью.
3.5 Нулевой защитный проводник (РЕ) — проводник в электроустановках напряжением до 1 кВ, соединяющий зануляемые части с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухо-заземленной средней точкой источника в сетях постоянного тока.
3.6 Нулевой рабочий проводник (N) — проводник, используемый для питания приемников электрической энергии и соединения одного из их выводов с заземленной нейтралью электроустановки.
3.7 Совмещенный нулевой рабочий и защитный проводник (PEN — проводник ) — проводник, сочетающий функции защитного и нулевого рабочего проводников.
3.8 Заземляющий проводник — защитный проводник, соединяющий заземляемые части электроустановки с заземлителем.
3.9 Заземлитель — проводник (электрод) или совокупность электрически соединенных между собой проводников, находящихся в контакте с землей или ее эквивалентом, например, с неизолированным от земли водоемом.
3.10 Защита от непосредственного прикосновения к токоведущим частям; защита от прямого контакта — технические мероприятия, электрозащитные средства и их совокупности, предотвращающие прикосновение к токоведущим частям, находящимся под напряжением, или приближение к ним на расстояние менее безопасного.
- Характеристики измеряемой величины, нормативные значения измеряемой величины.
Объектами измерений являются:
— зануляющие (заземляющие) защитные проводники;
- проводники уравнивания потенциалов.
Действующий ГОСТ 50571.10-94 регламентирует требования к электробезопасности, согласно которым:
4.1 Заземление или зануление следует выполнять:
— при напряжение 380 В и выше переменного тока и 440В и выше постоянного тока во всех электроустановках,
— при номинальных напряжениях выше 42В, но ниже 380В переменного тока и выше 110В, но ниже 440 В постоянного тока – только в помещениях с повышенной опасностью, особо опасных и наружных установках.
4.2 Заземление и зануление электроустановок не требуется при номинальных напряжениях до 42В переменного тока и до 110В постоянного тока во всех случаях (исключение составляет металлические оболочки и броня контрольных и силовых кабелей и проводов напряжением до 42В переменного тока и 110В постоянного тока, проложенных на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т.п. Вместе с кабелями и проводами, металлические оболочки и броня которых подлежат заземлению или занулению).
К частям, подлежащим занулению или заземлению относятся:
— корпуса электрических машин, трансформаторов, аппаратов, светильников и.т.п;
— приводы электрических аппаратов;
— вторичные обмотки измерительных трансформаторов;
— каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съёмные или открывающие части, если на последних установлено электрооборудование напряжением выше 42В переменного тока или более 110В постоянного тока;
— металлические конструкции распределительных устройств, металлические кабельные
конструкции, металлические кабельные соединительные муфты, металлические оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, металлические рукава и трубы электропроводки, кожухи и опорные конструкции шинопроводов, лотки, короба, струны, тросы и стальные полосы, на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым проложены кабели с заземленной металлической оболочкой или броней.), а также другие металлические конструкции, на которых устанавливается электрооборудование;
— металлические корпуса передвижных электроприёмников:
а) Заземляющие и нулевые защитные проводники, а также проводники металлической связи корпусов оборудования передвижных электроустановок должны быть медными, гибкими, как правило находиться в общей оболочке с фазными проводами и иметь равное с ними сечение.
б) В сетях с изолированной нейтралью допускается прокладка заземляющих проводников металлической связи корпусов оборудования отдельно от фазных проводов. При этом их сечение должно быть не менее 2,5см 2 .
— металлические корпуса переносных электроприёмников:
а) Заземление или зануление переносных электроприёмников должно осуществляться специальной жилой, расположенной в одной оболочке с фазными жилами переносного провода и присоединяемый к корпусу электроприёмника и к специальному контакту вилки втычного соединителя. Сечение этой жилы должно быть равным сечению фазных проводов. Использование для этой цели нулевого рабочего провода ,в том числе расположенного в одной оболочке не допускается.
б) Жилы проводов и кабелей, используемые для заземления или зануления переносных электроприёмников, должны быть медными, гибкими, сечением не менее 1,5мм 2 для переносных электроприёмников в промышленных установках и не менее 0,75мм 2 для
бытовых переносных электроприёмников.
Заземляющие и нулевые защитные проводники в электроустановках до 1кВ в соответствии с ПУЭ п. 1.7.76 табл. 1.7.1. должны иметь размеры не менее приведенных в таблице 1.
Таблица 1. Наименьшие размеры заземляющих и нулевых защитных проводников.
Заземляющие и нулевые жилы кабелей и многожильных проводов в общей оболочке с фазными жилами:
Толщина полки, мм
Водогазопроводные трубы (стальные):
Толщина стенки, мм
Тонкостенные трубы (стальные):
Толщина стенки, мм
4.3 В соответствии с ПТЭЭП Приложение 1, измеренное значение сопротивления цепи между заземленными установками и элементами заземленной установки должно быть не выше 0,05 Ома.
4.4 Во взрывоопасных зонах любого класса подлежат занулению ( заземлению):
-Электроустановки при всех напряжениях переменного и постоянного тока;
-Электрооборудование, установленное на занулённых (заземленных) металлических конструкциях (которые в невзрывоопасных зонах разрешается не занулять (не заземлять))
Это требование не относится к электрооборудованию, установленному внутри зануленных заземленных) корпусов шкафов и пультов.
В качестве нулевых защитных (заземляющих) проводников должны быть использованы
проводники, специально предназначенные для этой цели.
4.5 Электросварочные установки подлежат заземлению (занулению).
В электросварочных установках кроме заземление (зануления) корпуса и других металлических нетоковедущих частей оборудования, как указано выше, как правило, должно быть предусмотрено заземление одного из зажимов (выводов) вторичной цепи источников сварочного тока: сварочных трансформаторов, статических преобразователей и тех двигателей – генераторных преобразователей, у которых обмотки возбуждений генераторов присоединяются к электрической сети без разделительных трансформаторов.
В электросварочных установках, в которых дуга горит между электродом и электропроводящим изделием, следует заземлять (занулять) зажим вторичной цепи источника сварочного тока, соединяемый проводником (обратным проводом) с изделием.
Если указанное выше по условиям электротехнического процесса не может быть выполнено, а также переносные и передвижные электросварочные установки, заземление ( зануление ) оборудования которых представляет значительные трудности, должны быть снабжены устройством защитного отключения.
4.6 На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:
— основной (магистральный) защитный проводник;
— основной (магистральный) заземляющий проводник или основной заземляющий зажим;
— стальные трубы коммуникаций зданий и между зданиями;
— металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание.
Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.
4.7 К дополнительной системе уравнивания потенциалов должны быть подключены все доступные прикосновению открытые проводящие части стационарных электроустановок, сторонние проводящие части и нулевые защитные проводники всего электрооборудования (в том числе штепсельных розеток).
Для ванных и душевых помещений дополнительная система уравнивания потенциалов является обязательной и должна предусматривать, в том числе, подключение сторонних проводящих частей, выходящих за пределы помещений. Если отсутствует электрооборудование с подключенными к системе уравнивания потенциалов нулевыми защитными проводниками, то систему уравнивания потенциалов следует подключить к РЕ шине (зажиму) на вводе. Нагревательные элементы, замоноличенные в пол, должны быть покрыты заземленной металлической сеткой или заземленной металлической оболочкой, подсоединенными к системе уравнивания потенциалов. Не допускается использовать для саун, ванных и душевых помещений системы местного уравнивания потенциалов.
- Условия измерений.
При выполнении измерений, согласно руководству по эксплуатации «Измеритель сопротивления ИС-10, соблюдают следующие условия:
— измерения производятся в светлое время суток, при естественном или искусственном освещении, при температуре от минус 30 до плюс 40 0 С, и относительной влажности воздуха до 90% (при температуре 30 0 С). Внешние магнитные поля, кроме поля земного магнетизма, должны отсутствовать.
— схема цепи заземления на период проверки должна быть полностью смонтирована, укомплектована всеми элементами согласно проекту.
- Метод измерений.
6.1 Измерения активного сопротивления зануляющих (заземляющих) защитных проводников выполняют методом прямых измерений.
6.2 Прочность контактных сварок и сварных соединений определяется ударом молотка массой не более 1 кг.
6.3 Сечение заземляющих (зануляющих) проводников проверяют, измеряя их геометрические размеры с помощью штангенциркуля.
6.4 Измерение сопротивления переходных контактов сети заземления производится Измерителем сопротивления ИС-10.
6.5 За величину измеренного активного сопротивления принимают показания цифрового индикатора.
- Требования к средства измерения, вспомогательным устройствам.
При выполнении измерений применяются средства измерения и другие технические средства, приведенные в таблице 2.
Таблица 2. Приборы, средства измерений.
Порядковый номер и наименование средства измерений (СИ), испытательного оборудования (ИО), вспомогательных устройств
Обозначение стандарта, ТУ и типа СИ, ИО
Метрологические характеристики (кл. точности, пределы погрешностей, пределы измерений)