Самовосстанавливающийся предохранитель
Устройство, назначение и основные параметры

Да, есть такой хитроумный электронный компонент с очень длинным названием – самовосстанавливающийся предохранитель. Что это за «зверь» такой и как работает? Об этом и пойдёт речь.

Все знают обычный плавкий предохранитель. Устроен он просто и работает незаурядно. Принцип его работы основан на тепловом действии электрического тока.
Берётся тонкий медный провод, который выдерживает определённую силу тока, помещается в стеклянную или керамическую колбу, чтобы при срабатывании расплавленный металл не разбрызгивался в разные стороны. Иногда этот защитный элемент спасает при коротком замыкании в схеме, но вот беда, сам он «умирает» навсегда.
Для замены неисправного плавкого предохранителя требуется вскрывать корпус устройства, и заменять сгоревший предохранитель. Но производить такую операцию не всегда удобно, да и требуется она не всегда. Поэтому в таких случаях самовосстанавливающийся предохранитель является весьма логичной заменой плавкому предохранителю.
Самовосстанавливающиеся предохранители активно используются в компьютерах и игровых приставках для защиты портов (например, USB, HDMI), а также аккумуляторных батарей в портативной технике.
Итак, давайте разберёмся в том, как устроен самовосстанавливающийся предохранитель (сокращённо будем называть его СП), а также каковы его основные параметры.
Самовосстанавливающийся предохранитель изготавливается из специального проводящего пластика. Этот пластик вещество особое. Он состоит из непроводящего кристаллического полимера и введёнными в него мельчайшими частицами технического углерода. Частицы технического углерода распределены в объёме полимера и свободно проводят электрический ток.
Сам пластик формуют в тонкий лист и на плоскости напыляют токоведущие электроды. За счёт электродов удаётся распределить энергию по всей площади поверхности. К электродам крепят лепестковые или проволочные выводы, за счёт которых СП подключают в электрическую цепь.
Основная особенность проводящего пластика – это высокий нелинейный положительный температурный коэффициент сопротивления (ТКС). Проще говоря, проводящий пластик проводит ток до тех пор, пока его температура не превысит определённый порог.
После этого сопротивление проводящего пластика резко увеличивается, что и приводит к разрыву электрической цепи. Это происходит потому, что при превышении температурного порога кристаллическая структура полимера трансформируется в аморфную, а цепочки технического углерода, по которым и проходил ток, разрушаются. Это приводит к резкому увеличению сопротивления.
Откуда же появляется нагрев, который приводит к изменению фазового состояния полимера? Повышение температуры полимера происходит потому, что при аварийном режиме через самовосстанавливающийся предохранитель начинает течь ток, который превышает номинальный (т. е. рабочий). При этом за счёт теплового действия тока температура материала предохранителя увеличивается. Это в свою очередь приводит к «срабатыванию» предохранителя.
Параметры самовосстанавливающихся предохранителей.
Для того чтобы грамотно подобрать самовосстанавливающийся предохранитель для конкретного устройства нужно знать его основные параметры. Рассмотрим их.
Максимальное рабочее напряжение (Vmax или Umax, V). Напряжение, которое способен выдержать без разрушения самовосстанавливающийся предохранитель при протекании через него номинального тока. Например, для защиты USB порта подойдёт СП с максимальным рабочим напряжением 6 вольт.
Номинальный рабочий ток или ток удержания (IHOLD или Ih, A). Ток, который может проводить через себя самовосстанавливающийся предохранитель без «срабатывания».
Минимальный ток срабатывания (Itrip или IT, A). Минимальный ток через СП, при котором происходит переход от проводящего состояния к непроводящему. Иными словами это ток, при котором самовосстанавливающийся предохранитель «срабатывает» — размыкает цепь.
Минимальное и максимальное сопротивление (Rmin и R1max, Ohms). Это сопротивление самовосстанавливающегося предохранителя. По-другому можно сказать, что это сопротивление СП в рабочем, проводящем состоянии. Параметр Rmin — это минимальное сопротивление СП, а R1max — это сопротивление предохранителя спустя 1 час после последнего срабатывания. Оба параметра указываются для конкретной температуры, например для 23 0 C. Rmin и R1max обычно указывается более просто, например, так: R = 0,5…1,17 (Ом).
На самом деле это очень важный параметр. Чем он меньше, тем лучше, так как предохранитель всегда включается последовательно с потребителем тока (перед нагрузкой). А, как известно, на сопротивлении теряется мощность. Для приборов, питающихся от автономных источников питания (аккумуляторов, батареек) лучше подбирать СП с малым сопротивлением в рабочем состоянии.
Рабочая температура самовосстанавливающегося предохранителя обычно лежит в интервале от -40 0 С до +85 0 С. При такой температуре сопротивление СП практически не меняется и лежит в пределах Rmin – Rmax. Температура «защёлкивания», или по-другому, срабатывания обычно составляет от +125 0 С и выше.
Ещё один параметр. Максимальный допустимый ток (Imax, A). Это максимальный ток короткого замыкания, который выдерживает самовосстанавливающийся предохранитель без разрушения при номинальном напряжении (Vmax). Если ток через СП превысит величину Imax, то он выйдет из строя навсегда (на деле – «сгорит»). Обычно величина этого параметра лежит в интервале нескольких десятков ампер (40 – 100 A).
Также очень важный параметр – это скорость срабатывания СП (Max. Time to Trip). Так как на нагрев требуется некоторое время, то предохранитель срабатывает не мгновенно, а спустя какое-то время. Оно достаточно мало и составляет долю секунды. Время срабатывания зависит от тока перегрузки и температуры окружающей среды. Такие параметры, как время срабатывания указываются в документации на конкретную модель самовосстанавливающегося предохранителя.
Самовосстанавливающиеся предохранители выпускаются как в обычных корпусах для монтажа в отверстия (технология THT), так и для поверхностного (технология SMT). СП для монтажа в отверстия внешне выглядят как варисторы и имеют либо дисковый корпус, либо прямоугольный.

СП для поверхностного монтажа похожи на SMD резисторы, но могут иметь и другой корпус (как правило, в виде пластинки с ленточными выводами).

Самовосстанавливающиеся предохранители выпускают такие фирмы, как Bourns и Fuzetec.
Пример применения.
Примером применения самовосстанавливающегося предохранителя может быть использование его в блоке питания, о котором рассказывалось на страницах сайта.

В нем самовосстанавливающийся предохранитель используется совместно с другими элементами защиты. Срабатывание защиты не влечёт за собой необратимое перегорание предохранителя, и устройство начинает работать сразу же после устранения неисправности или короткого замыкания в питаемой схеме.
Самовосстанавливающиеся предохранители компании Littelfuse
Littelfuse 250R120T 250S130 0805L100 30R110 30R160
В статье рассматриваются характеристики самовосстанавливающихся предохранителей компании Littelfuse.

Введение
Традиционный способ защиты от перегрузки по току – применение плавких или самовосстанавливающихся предохранителей.
Компания Littelfuse – ведущий производитель пассивных электронных компонентов для «защиты» разного рода электротехнических устройств. Одно из важных направлений – производство предохранителей, основное назначение которых – защита от избыточного тока при возникновении аварийных ситуаций в системе. Кроме классических плавких предохранителей компания в настоящее время выпускает и т.н. самовосстанавливающиеся предохранители (polymeric positive temperature coefficient devices) [1-3].
Самовосстанавливающиеся предохранители – по сути, полимерные терморезисторы с положительным температурным коэффициентом (Positive Temperature Coefficient – PTC). В некоторых приложениях полимерные PTC-предохранители (в дальнейшем полимерные предохранители) можно с успехом использо- вать для замены стандартных плавких предохранителей (fuse).
И плавкие и полимерные предохранители предназначены для защиты устройств от перегрузок по току при возникновении аварийных режимов в системе, предохранения оборудования и людей от возникновения пожара и возможного риска поражения электрическим током, а также для изолирования дефектных блоков и узлов от основной системы еще до момента возникновения более неблагоприятных последствий.
Однако эти типы предохранителей базируется на разной технологии изготовления, и соответственно обладают разными уникальными характеристиками, преимуществами и недостатками. Понимание особенностей технологий и принципа действия поможет сделать правильный выбор предохранителя для конкретного приложения с учетом всех его многочисленных параметров. Пожалуй, основное их отличие заключается в том, что полимерные предохранители восстанавливают свои характеристики (за исключением экстремальных случаев) после прекращения действия перегрузки, т.е. после снижения уровня протекающего тока. Однако восстановление характеристик происходит не полностью, что, конечно, следует учитывать при их применении в конкретном приложении. Традиционные плавкие предохранители для возобновления работоспособности системы подлежат обязательной замене после перегорания.
Поскольку полимерные предохранители восстанавливаются автоматически, их применение оправдывается в тех цепях, в которых перегрузки по току случается довольно часто, а также, если доступ к месту их установки затруднен. В таких случаях сокращаются расходы на гарантийное и сервисное обслуживание. Однако для окончательного выбора типа предохранителя необходимо учитывать все эксплуатационные характеристики устройства.
И полимерные и традиционные плавкие предохранители реагируют, по сути, на тепло, выделяемое при протекании тока. В плавком предохранителе происходит расплавление плавкой вставки (т.е. обрыв цепи) и, в конечном счете, его разрушение. Самовосстанавливающийся только ограничивает ток в цепи вследствие существенного увеличение величины его сопротивления, что также происходит в процессе его нагревания.
Упрощенное устройство полимерного предохранителя и принцип его действия следующий. Полимерный предохранитель представляет собой компаунд, состоящий из непроводящего полимерного материала (как правило, полиэтилена) и проводящих фракций графита. Благодаря наличию графитовых каналов в нормальном состоянии полимерный предохранитель является проводником со сравнительно низким собственным сопротивлением. При разогреве выше определенной температуры (т.н. температуры перехода) молекулы полимера получают дополнительную энергию, и изначальная кристаллическая структура трансформируется в аморфную, вследствие этого разрушаются графитовые каналы, что приводит к резкому изменению проводимости и соответственно к повышению сопротивления предохранителя. При снижении температуры полимер кристаллизуется, графитовые каналы восстанавливаются, что приводит к возврату проводящих свойств предохранителя.
Характеристика переключения приведена на Рис. 1. Однако недостаток в том, что величина сопротивления после восстановления всегда больше первоначальной. Число переходов от проводящего состояния к непроводящему и обратно практически неограниченно, т.е. при отсутствии катастрофических факторов срок службы полимерного предохранителя не ограничен.
![]() |
|
| Рис 1. | Характеристика переключения полимерных предохранителей. |
В статье рассматриваются характеристики и особенности полимерных предохранителей (Polyfuse, Resettable PTC), выпускаемых компанией Littelfuse.
Характеристики
Сопротивление полимерных предохранителей как минимум в два раза больше в сравнении с плавкими.
В отличие от плавких предохранителей полимерные не обеспечивают полного разрыва цепи. Поэтому в «отключенном» состоянии (т.е. в состоянии высокого сопротивления) полимерные предохранители характеризуются током утечки. Величина тока утечки может достигать нескольких сотен миллиампер. Плавкие предохранители при срабатывании полностью разрывают цепь протекание тока.
При выборе полимерного предохранителя следует принимать во внимание изменение параметров в рабочем диапазоне температур, габаритные размеры, а также соответствие стандартам. Для некоторых типов полимерных предохранителей в Табл. 1 приведены зависимости номинального тока срабатывания предохранителей от температуры.
Скорость реакции полимерных предохранителей хуже, чем у плавких. Времятоковая характеристика полимерных предохранителей во многом аналогична той, которую имеют плавкие предохранители типа Littelfuse Slo-Blo. Времятоковая характеристика отключения – зависимость времени «перегорания» от протекающего тока. Это, по сути, время отключения как функция тока. На Рис. 2 приведен график зависимости времени срабатывания от величины протекающего тока для полимерных предохранителей серии 0805L.
![]() |
|
| Рис 2. | Времятоковые характеристики полимерных предохранителей серии 0805L. |
Максимально допустимый ток через полимерный предохранитель 10-100 А, тогда как у некоторых типов плавких максимальный ток может достигать величины 10 тыс. ампер.
Определения некоторых основных электрических характеристик полимерных предохранителей во многом соответствуют тем, которые используются для плавких [1-4]. Вместе с тем, в связи с особенностями технологии в документации, предоставляемой компанией Littelfuse, в качестве основных приводятся следующие электрические характеристики полимерных предохранителей.
Ток удержания Ihold (hold current). По сути, номинальный ток предохранителя. Ток удержания – максимальный ток, который может протекать через предохранитель, и который не приводит к переходу в непроводящее состояние при заданной температуре окружающего воздуха (как правило, – это 20 или 23 °C).
Ток срабатывания Itrip (trip current) – минимальный ток, при котором полимерный предохранитель переходит в непроводящее состояние при заданной температуре окружающего воздуха.
Максимальный ток Imax (maximum fault current) – максимальный ток, который предохранитель может выдержать без повреждения при напряжении Vmax.
Максимальное напряжение Vmax (maximum voltage device) – максимальное напряжение, которое может выдержать предохранитель без повреждения при протекании максимального тока Imax. Следует учитывать не только номинальное значение рабочего напряжения, но и возможность возникновения разного рода импульсных помех (например, в системе электропитания автомобилей). Полимерные предохранители общего применения компании Littelfuse предназначены для работы при напряжении до 60 В. Для сравнения плавкие предохранители рассчитаны на напряжение 1000 В и более.
Мощность рассеивания Pdmax (power dissipated) – мощность, рассеиваемая предохранителем при переходе в непроводящее состояние при заданной температуре окружающего воздуха (обычно 20 или 23 °C).
Минимальное сопротивление Rmin (minimum resistance of device in initial state). Минимальное начальное сопротивление предохранителя в проводящем состоянии до монтажа на плату, по сути, до его пайки.
Типовое сопротивление Rtyp (typical resistance of device in initial state). Типовое сопротивление предохранителя в проводящем состоянии до монтажа на плату.
Максимальное сопротивление после восстановления R1max (maximum resistance) – максимальное сопротивление при заданной температуре, измеренное по истечению одного часа после восстановления или через 20 с после пайки при температуре 260 °C.
В Табл. 2 приведены параметры полимерных предохранителей серии 0805L, в Табл. 3 – параметры предохранителей серии 30R.
Заключение
Полимерные предохранители (Polyfuse, Resettable PTC) это не аналог плавких предохранителей и по сравнению с ними – инерционные устройства, что необходимо учитывать при выборе предохранителя для конкретного приложения. Следует также принимать меры для ограничения протекающего тока и падения напряжения на нем. В некоторых случаях даже сопротивление соединительных проводов, например, электропроводка транспортного средства или внутреннее сопротивление аккумулятора может ограничить ток до допустимого уровня в цепи предохранителя.
Нельзя забывать, что при восстановлении полимерного предохранителя его характеристики ухудшаются после каждого срабатывания, поэтому на реальное число срабатываний влияют также специфические особенности эксплуатации некоторых приборов (например, тех, в которых перегрузка по току – частое явление).
Ток срабатывания в значительной мере зависит от температуры окружающей среды. Если устройство предназначено для эксплуатации в расширенном диапазоне температур, использование полимерных предохранителей потенциально может привести к ложным срабатываниям.
Диапазон рабочих температур полимерных предохранителей всего -40…85 °С. На Рис. 3 приведены графики зависимости номинальных параметров от температуры для плавких и полимерных предохранителей.
![]() |
|
| Рис 3. | Зависимость номинальных параметров от температуры для предохранителей разного типа. |
Постоянное уменьшение габаритных размеров современной портативной электроники влечет за собой уменьшение размеров используемых компонентов. Полимерные SMD- предохранители типоразмера 0402 и 0603 можно с успехом применять в ноутбуках, мобильных телефонах и других интеллектуальных гаджетах.
![]() |
|
| Рис 4. | Варианты использования полимерных предохранителей. |
В Табл. 1. 3 приведены параметры полимерных предохранителей, выпускаемых компанией Littelfuse, на Рис. 4 – возможные варианты их использования.
Более полную информацию о полимерных предохранителях компании Littelfuse можно найти в [1-3].
Самовосстанавливающийся предохранитель в моторчик фароочистителя


Перебрал заново привод правого фароочистителя. Все-таки предохранитель там нужен, статья на SVR хоть и полезна, но вот совет выкинуть предохранитель и спаять контакты оказался вредным. В результате при невыясненных обстоятельствах сгорел сам электромоторчик (возможно, щетка примерзла, дело было вроде зимой).
Подобрал вот такой предохранитель: FUSE FUSB250F/ RUSB-250 — PolySwitch (2,5A/16V). Отлично встал в нишу в корпусе, припаял к медным контактам бессвинцовым припоем ПОМ-3.
Результат — оба фароочистителя отлично работают, что очень актуально в осеннюю погоду.
Еще и лампочка в фаре одна перегорела, взял в Ленте какие-то H4 +50% с платиновым напылением колбы (не помню производителя), но стандартной мощности 60/55W. Хоть и скептически отношусь к неведомо откуда появляющемуся дополнительному свету в галогеновой лампе стандартной мощности, но светят реально хорошо. Но мокрый асфальт все равно толком не видно, в остальных условиях вполне нормальный свет.

Volvo 940 1994, двигатель бензиновый 2.3 л., 131 л. с., задний привод, механическая коробка передач — электроника
Машины в продаже

Volvo 940, 1992

Volvo 940, 1992

Volvo 940, 1993

Volvo 940, 1993
Комментарии 25

Зимой актуально не забывать очищать дворники фар от льда…

там проблема не только в предиках…и на 2.5 ампера маловато будет

Ну все остальное проверено и смазано. Вообще если описание на эти предохранители посмотреть — 2,5A это ток гарантированного несрабатывания, а так где-то ближе к 5A вырубает, в зависимости от температуры. Да даже 2,5A это 30-35W, притом привод работает через редуктор с очень большим передаточным числом. В общем, посмотрим, сам предохранитель поменять не очень то сложно, достаточно крышку снять.

Осталось их найти.

Если они периодически клинят, есть вариант того что прозвонятся нормально.

У этих предохранителей при каждом срабатывании сопротивление немного возрастает, что приводит к уменьшению порога срабатывания. Так что предохранители, скорее всего, под замену.

Короче, вскрытие покажет.

Главное — вскрыв крышку, сначала вытащить и прозвонить предохранитель. Если вытащить шестерни — будет веселье.

А если дворники на фарах периодически останавливаются посреди фары, в чем проблема может быть?

Возможно, как раз родные предохранители уже так себя проявляют. Они ж там с завода тоже стоят, «таблетка» между пружинящями контактами которые на фото. Но может и другая причина, смотреть надо. Правда, собрать это все обратно и чтобы работало нормально — та еще задачка. Но предохранитель можно посмотреть, не сильно все раздербанивая.

мне больше интересен принцип их самовосстановления. там свинец чтоль?

«Полимерный самовосстанавливающийся предохранитель представляет собой матрицу из непроводящего ток полимера, смешанного с техническим углеродом. В холодном состоянии полимер кристаллизован, а пространство между кристаллами заполнено частицами углерода, образующими множество проводящих цепочек. Если через предохранитель начинает протекать слишком большой ток, он начинает нагреваться, и в какой-то момент времени полимер переходит в аморфное состояние, увеличиваясь в размерах. Из-за этого увеличения углеродные цепочки начинают разрываться, что вызывает рост сопротивления, и предохранитель нагревается еще быстрее. В конце концов сопротивление предохранителя увеличивается настолько, что он начинает заметно ограничивать протекающий ток, защищая таким образом внешнюю цепь. После устранения замыкания, когда протекающий ток снизится до исходного значения, предохранитель остывает и его сопротивление возвращается к начальному значению.»
На habrahabr отлично про них написано в статье «Самовосстанавливающиеся предохранители. Мифы и реальность» (прямые ссылки я никогда не даю).
Не везде они подходят, в общем. Но для защиты моторчика — вполне.

шикаарно) и полезно

надо же, такие предохранители бывают оказывается, век живи век учись…

у меня лежат такие на 10вт)
Огромные пластины. Потом покажу для чего)

Раз на 10W и огромные — значит и напряжение там не 12V )

Тоньше спираль, больше температура, больше света. Меньше ресурс. Я так себе это вижу.

Вроде логично. Ресурс то ладно (хотя лампочки под 700 стоили, досадно будет если быстро перегорят). Но важнее, чтобы из-за большей температуры отражатель осыпаться не начал. Хотя, мощность то стандартная, может теплоотдача тоже в пределах нормы.

Ой, не знаю. Сейчас на корейце линзы и ксенон. Уже года 2 как поставил. Недавно крякнул блок розжига. Поехал в контору, в которой покупал. Купил новый блок розжига (1.100р.), предложили заменить лампы. Мол, мы сейчас замеряет свет на старых, ставим новые, замеряем на новых. Если после этого вы не захотите их купить — мы ставим старые обратно. Я согласился.
В итоге новые лампы выдали в 3.5 раза больше света. И я их купил.
Это я к чему… 300р. за штуку.
Когда руки дойдут до Volvo наконец-то и я пересяду обратно на неё — буду ставить линзы и ксенон. Надо будет стёкла без рефлектора, конечно, но придумаю что-нибудь.
Лампы по 700р. Дорого, блин…

предохранитель полюбасу нужен. была подобная ситуация( шлангом на форсунку зажало поводок- в перед идет, а назад не хочет), так вот штатный пред выручил- и моторчик не сгорел
Самовосстанавливающиеся предохранители Littelfuse, Bourns
Одним из параметров, который определяет надежность изделия является его ремонтопригодность и скорость восстановления работоспособности. Однако учитывая тенденцию миниатюризации изделий, такая простая операция как замена вышедшего из строя обычного плавкого предохранителя влечет за собой достаточно серьезные затраты ресурсов и времени, а в случае применения SMD предохранителя, замена «в полевых» условиях становится вообще невозможной.

Решить эту проблему можно путем перехода с плавкого предохранителя на самовосстанавливающийся.
Самовосстанавливающийся предохранитель представляет собой полимерный терморезистор с положительным температурным коэффициентом. Материал предохранителя — это проводящий электрический ток полимер с примесью технического углерода. Концентрация углерода такова, что в холодном состоянии полимер кристаллизован, а пространство между кристаллами заполнено частицами углерода, удельное сопротивление материала низкое. При повышении температуры полимер переходит в аморфное состояние, увеличиваясь в размерах. Углеродные цепочки начинают разрываться, что вызывает быстрый рост удельного сопротивления.

При увеличении электрического тока, протекающего через полимер, происходит его разогрев и удельное сопротивление увеличивается настолько, что материал становится непроводящим. Таким образом возможно ограничение протекающего через него тока, и как следствие защита внешней цепи. После остывания происходит обратный процесс кристаллизации и полимер снова становится проводником.
Температурная зависимость удельного сопротивления полимера показана на рисунке 2.

Следует учитывать, что основным фактором, влияющим на удельное сопротивление материала является всё таки его температура, а не протекающий по нему ток. На кривой отмечено два характерных диапазона: «Нормальный диапазон» при котором изделие является обычным проводником (температура материала ниже 80° С) и «Диапазон срабатывания», когда температура достигает некоего граничного значения и сопротивление начинает быстро возрастать, изменяясь почти по экспоненциальному закону. После остывания изделия, его сопротивление восстанавливается.
Чтобы разогреть материал до температуры срабатывания требуется некоторое время, поэтому ограничение тока в цепи происходит не мгновенно. При малых токах, близких к пороговому, срабатывание может занять несколько секунд, при токах близких к максимально допустимому, доли секунды.
На время срабатывания также влияет температура окружающей среды. Чтобы разогреть материал до состояния срабатывания от более низкой температуры окружающей среды необходимо затратить больше энергии чем от более высокой, а значит, и процесс в этом случае займёт больше времени. Поэтому время срабатывания, максимальный гарантированный ток нормальной работы (ток удержания, Ihold) и гарантированный ток срабатывания (Itrip) зависят от температуры окружающей среды.
В нижней части графика, рисунок 3, находится номинальная рабочая область прибора, область низкого сопротивления. В верхней части графика находится область гарантированного срабатывания. В средней части графика располагается нерабочая область, где соблюдение параметров никак не нормируется и не гарантируется. При расчётах и эксплуатации в широком диапазоне температур окружающей среды схем с использованием самовосстанавливающихся предохранителей это должно учитываться и безусловно соблюдаться.
Основные параметры самовосстанавливающихся предохранителей:
- Umax – максимальное напряжение, которое может выдержать изделие без разрушения или повреждения при протекании тока через него не более Imax.
- Imax – максимальный ток, протекающий через изделие, при котором не происходит его разрушения или повреждения при приложенном к нему напряжении не более Umax.
- Ihold — максимальный ток, протекающий через изделие, при котором не происходит его отключения при температуре окружающей среды +20°С (ток удержания).
- Itrip – минимальный ток, протекающий через изделие, при котором происходит его отключение при температуре окружающей среды +20°С (ток срабатывания).
- Ttrip — Время срабатывания изделия, характеризует время перехода изделия в непроводящее состояние и имеет сильную зависимость от величины протекающего по нему тока и температуры окружающей среды. Чем больше ток и температура, тем быстрее происходит переход. Диапазон времени срабатывания начинается от единиц миллисекунд.
- Pd – Мощность, рассеиваемая изделием в отключённом (закрытом и нагретом) состоянии при температуре окружающей среды +20°С.
- Рабочий диапазон температур, °C — как правило, составляет -40°С…+85°C. В этом диапазоне изделие не достигает температуры перехода.
Рекомендации по применению самовосстанавливающихся предохранителей
При выборе предохранителя, который вы будете использовать в своих решениях, обратите внимание на максимально допустимый рабочий ток. Иногда за время перехода в закрытое состояние прибор «успевает» полностью разрушиться. Если высока вероятность превышения максимального тока, то стоит применить обычный плавкий предохранитель, либо ограничить предельный ток (ток короткого замыкания) с помощью дополнительного резистора.
Ещё один очень важный параметр — максимальное рабочее напряжение. Когда прибор находится в нормальном режиме, напряжение на его контактах очень мало. Но при переходе в состояние срабатывания оно может резко возрасти. В настоящее время имеются серии самовосстанавливающихся предохранителей, рассчитанные на высокое напряжение, но они при этом имеющие небольшие рабочие токи.
Применение самовосстанавливающихся предохранителей в сочетании с более быстродействующими устройствами защиты позволяет полностью реализовать требования защиты. С успехом такое сочетание применяют для защиты периферийных устройств компьютеров, в телекоммуникации, для защиты АТС, кроссов, сетевого оборудования от всплесков тока, вызванных попаданием линейного напряжения и молнии. Кроме того, самовосстанавливающиеся предохранители активно используются в компьютерах и игровых приставках для защиты портов (например, USB, HDMI), а также аккумуляторных батарей в портативной технике.
Ниже приведены примеры построения схем с применением самовосстанавливающегося предохранителя.
Всё про электрический предохранитель
Думаю что не стоит объяснять, что такое электрический предохранитель. Сам по себе предохранитель – это коммутационный прибор, по своей сути защита. В случае короткого замыкания или перегруза сети предохранитель отключает электрическую цепь размыканием. Отсюда следует, что электрический предохранитель защищает оборудование от замыканий и предотвращает возможные поломки. В данной статье мы расскажем о видах предохранителей и расскажем, как правильно их использовать.
Принцип работы электрического предохранителя
Практически каждый из нас был свидетелем такой ситуации, при которой от короткого замыкания страдала домашняя бытовая техника, работающая от сети. Почему так происходит? Наверно всем понятно, что работа домашнего бытового электрического оборудования напрямую зависит от стабильности напряжения в сети и качества поставляемой электроэнергии. Соответственно, если напряжение в электросети экстренно меняется, то это конечно же может «убить» не самую стойкую технику в доме. Приведу вам пример. Почему владельцам iPhone не советуют покупать китайские зарядки по 100 рублей? Нет, не только потому что они быстро сломаются. Дело в том, что дешевые зарядные устройства могут зарядить телефон, но делают они это с перебоями. Такой процесс сильно влияет на аккумулятор телефона и зарядиться он даже если сможет, то это равно или поздно приведет к его утилизации, так как он будет держать заряд меньше. Не стабильность напряжения при резком, даже плавном повышении, зачем минимизации этого напряжения, может привести в редких случаях к воспламенению. Отступлю на секунду и скажу по поводу дешевых зарядных устройств, не используйте их, если любите свою технику. В среднем, достойное зарядное устройство будет стоить от 500 рублей, неплохие, например, фирмы Rexant.
Что касается крупной бытовой техники, то при резком скачке напряжения сильно может пострадать, допустим холодильник. Это конечно ситуация на миллион, но если момент включения компрессора устройства совпадёт со скачком, то поломки не избежать.
Как действует предохранитель. Данное защитное устройство работает последовательно с оборудованием, которое потребляет этот ток и производит разрыв цепи только при превышении номинального тока.
Классификация предохранителей
Данное устройство можно разделить на четыре класса основываясь на принципе работы во время перенапряжения. Они могут быть плавкие, электромеханические, электронные и самовосстанавливающиеся.
Плавкие предохранители
Во время замыкания токопроводящий элемента предохранителя расплавляется или испаряется. Другими словами, он перегорает. Плавкие предохранители считаются устаревшими, но при этом они считаются достаточно надёжными. Но явным недостатком можно считать его скорость срабатывания, отчего эффективность, соответственно, падает. Дело в том, что для расплавления требуется некоторое время, пусть и доли секунд. Из-за этого оборудование или человек, в короткий срок срабатывания предохранителя остаётся без защиты. Чтобы компенсировать данный недостаток, производители делают его такой формы, чтобы в допустимых местах он был максимально тонким. Для этого используют олово, которое, и плавится быстро, и не нарушает проводимость тока.
Электромеханические предохранители
Такие предохранители называют автоматами защиты или автоматическими выключателями, последний вариант применяется чаще всего. Такое устройство состоит из диэлектрического корпуса, где внутри расположены подвижный и неподвижный контакты. В момент превышения номинального значения тока датчик выключателя приводит в действие механический рычаг, который разрывает цепь. В подвижном контакте находится пружина, которая максимально быстро расцепляет контакт. Механизм расцепления приводится в действие обычно двумя расцепителями: тепловым или электромагнитным.
Два типа датчика в автоматах защиты:
- Тепловой датчик – это металлическая пластина, которая при нарастании силы тока нагревается, отчего пружина срабатывает.
- Электромагнитный датчик – представляет из себя катушку индуктивности с подвижным сердечником. Во время скачка напряжения этот сердечник втягивается, и пружина срабатывает.
Электронные предохранители
Такие устройства предназначены только для низковольтных электрических цепей. Их можно наблюдать в домашних бытовых устройствах или, допустим, в компьютерной технике, например в бытовой или компьютерной технике. Представляют собой микросхему, которая при увеличении силы тока выше номинального значения разрывает цепь с помощью полупроводникового затвора. У такого типа предохранителя есть значительное преимущество – это скорость срабатывания, но вот недостатком можно считать ограничение в сфере возможного применения.
Самовосстанавливающиеся предохранители
Данный тип предохранителей применяют в бытовых и электрических приборах. Когда сила тока становится выше нормы, нарастает сопротивление в проводнике предохранителе, что приводит к разрыву цепи. Такие устройства сделаны из полимеров с диэлектрическими свойствами и токопроводящим углеродом. При увеличении силы тока, углерод нагревается и высвобождается, в это время предохранитель становится диэлектриком. При спаде тока углерод остывает и кристаллизируются. Таким образом устройство приводит само себя в норму.



