Сетевой инвертор принцип работы

Сетевой инвертор принцип работы

Мы долго это ждали и это произошло! В правительстве Российской Федерации подписали Постановление №299 от 02.03.21.

Известный Российский производитель «Бастион» продолжает радовать новинками! Теперь это ИБП.

Весь спектр аккумуляторов от компании Vektor, в том числе и знаменитый Carbon доступны для наших клиентов.

Новое пополнение товаров в разделе: «Оборудование б/у»: Аккумуляторный инвертор Expert MKS 5K.

Уважаемые Клиенты и Посетители сайта! В связи с постоянно меняющимися курсами валют, стоимость оборудования и материалов тоже.

Государственная Дума приняла в третьем чтении поправки в Федеральный закон «Об электроэнергетике» в части развития.

Новинка на рынке накопления энергии — АКБ VECTOR c технологией DEEP CYCLE+CARBON Наша компания.

НОВИНКА на рынке аккумуляторов! Специально к началу водномоторного и туристического сезона!.

Рекомендуемые товары

Статьи

  • Зачем бесперебойник для котла отопления, он же ИБП (Источник Бесперебойного Питания)?
  • Уменьшаем затраты на отопление в помещениях с высокими потолками
  • Как правильно подобрать солнечные батареи
  • Солнечный ТЭН для нагрева воды
  • Как экономить электроэнергию?!
  • Выбираем ИБП — почему чистый синус лучше?
  • Выбрать солнечные батареи для дома?
  • Отопить дом без газа — это реально!
  • Маленькие шаги к Вашей энерго Независимости!
  • Солнечные сетевые инверторы — реальная экономия!
  • Как продлить жизнь аккумуляторов?!
  • Зелёный тариф в России — уже скоро?!

Сетевой инвертор — понятие и принцип работы

  • Печать
  • E-mail

Сетевыми (или grid-tie) инверторами являются устройства, преобразующие постоянное (DC) напряжение от возобновляемых источников энергии (солнечных батарей, ветроустановок или микроГЭС) в переменное (AC) напряжение, и передающие его напрямую в сеть 220 (или 380)В, тем самым снижая потребление электроэнергии от энергосетей.

Сетевые инверторы также называют синхронными преобразователями, так как они обладают отличительной особенностью — наличием синхронизации выходного напряжения и тока со стационарной сетью.

Таким образом, сетевой инвертор осуществляет преобразование постоянного тока от солнечных батарей и других возобновляемых источников энергии в переменный, с надлежащими значениями частоты и фазы для сопряжения со стационарной сетью. Как правило, преобразование осуществляется с помощью MPPT технологии: «Точка поиска максимальной мощности».

Принцип работы сетевого инвертора состоит в перетекании тока от сетевого инвертора в нагрузку, синхронизированного по частоте и фазе с входящим напряжением, при этом напряжение инвертора должно быть чуть выше напряжения в сети. Это становится возможным с помощью замера входной сети и повышения напряжения на выходе сетевого инвертора, чтобы вся энергия от солнечных батарей, преобразованная на сетевом инверторе использовалась в первую очередь и на 100%..

В целях безопасности сетевые инверторы оборудуются так называемой anti — islanding защитой: в случае выхода сети из строя, отключения внешней сети, либо выхода уровней напряжения или частот за допустимые пределы, автоматический выключатель в сетевом инверторе, отключает его выход от сети.

Срабатывание данного вида защиты зависит от настроек инвертора и условий сети. В худшем случае — если напряжение в сети опускается ниже от установленного в программе инвертора параметра или частота отклоняется на 0,5 -0,7 Гц от запраграммированного значения, сетевой инвертор должен остановить процесс генерации электроэнергии в сеть не менее чем за 100 миллисекунд.

Для того, чтобы снизить потери на преобразование постоянного напряжения в переменное, сетевые инверторы функционируют при высоких входных напряжениях – как правило не ниже, чем значение напряжения в сети. Кроме того, обычно они оборудованы встроенной системой отслеживания точки максимальной мощности солнечных батарей. Данная система слежения (Maximum Power Point Tracking (MPPT)) позволяет определять наиболее оптимальное соотношение напряжения и тока, снимаемых с солнечных модулей, тем самым позволяя получать максимум энергии при любых внешних изменениях метеоусловий, в результате этого генерация от солнечных панелей в сеть осуществляется даже в пасмурную погоду.

В настоящее время сетевые инверторы находят широкое применение для экономии электроэнергии на производствах, в офисах, в торговых центрах и т.п. Сетевые фотоэлектрические системы устанавливаются на таких объектах мощностью от 500 ватт и до сотен кВт.

Сетевые инверторы промышленного назначения используют для передачи энергии от возобновляемых источников энергии в 3-х фазную сеть. В настоящее время для промышленного использования производят сетевые инверторы мощностью до нескольких сотен кВт. Подобные инверторы (преобразовательные станции) построены по модульному принципу, с целью минимизации потерь и извлечения максимальной эффективности использования солнечной энергии.

Основные характеристики сетевых инверторов

  • номинальная выходная мощность – мощность, получаемая от данного инвертора при номинальном массиве соолнечных панелей.
  • выходное напряжение – показатель, определяющий к какой сети по напряжению может быть подключен инвертор. Для небольших инверторов (бытового назначения) выходное напряжение обычно равно 220 — 240В. Инверторы для промышленного назначения рассчитаны на к 3-х фазную сеть 380В.
  • максимальная эффективность — наивысшая эффективность преобразования энергии, которую может обеспечить инвертор. Максимальный КПД большинства сетевых инверторов составляет более 94%, у некоторых — до 99%.
  • взвешенная эффективность- средняя эффективность инвертора, этот показатель лучше характеризует эффективность работы инвертора. Этот показатель важен, так как инверторы, способные преобразовывать энергию при различных выходных напряжениях переменного тока, имеют разную эффективность при каждом значении напряжения.
  • максимальный входной ток — максимальное количество постоянного тока, которое может преобразовывать инвертор. В случае, если какой-либо возобновляемый источник (например, солнечная панель) будет производить ток, превышающий это значение, сетевой инвертор его не использует.
  • максимальный выходной ток — максимальный непрерывный переменный ток, производимый инвертором. Этот показатель используют для определения минимального (номинального) значения перегрузки по току устройств защиты (к примеру, выключателей или предохранителей).
  • диапазон отслеживания напряжения максимальной мощности — диапазон напряжения постоянного тока, в котором будет работать точка максимальной мощности сетевого инвертора.
  • минимальное входное напряжение — минимальное напряжение, необходимое для включения инвертора и его работы. Этот показатель особенно важен для солнечных систем, так как разработчик системы должен быть уверен, что для произведения этого напряжения в каждой цепочке последовательно соединено достаточное количество солнечных модулей.
  • степень защиты IP (или код исполнения) – характеризует степень защиты корпуса от проникновения внешних твердых предметов (первая цифра), а также воды (вторая цифра).

Пример среднесуточной генерации сетевой солнечной системы 12 кВт для Самарской области

Солнечная батарея на балконе: использование grid-tie инвертора

Привет geektimes. В предыдущей части было рассказано о тестировании контроллера заряда. Днем батарея заряжается, вечером или ночью накопленный заряд можно использовать. Ту систему можно считать законченной, что-либо принципиально новое добавить в нее уже сложно. Все работает, текущей емкости батареи в 12ач хватает для вечернего освещения комнаты светодиодной лентой и зарядки разных гаджетов. Все работает, однако есть и недостатки:

— Аккумуляторные батареи — достаточно дорогой и не совсем долговечный компонент.
— Накопленную энергию банально некуда девать. За все время я ни разу не разряжал батарею более чем на 50%.
— В солнечный день уже утром к 9-10 утра батарея полностью заряжена, соответственно, солнечные панели простаивают впустую.

В итоге, настала очередь протестировать следующий, более современный и широко используемый подход — отдачу электроэнергии непосредственно в электросеть. Технология весьма актуальна, т.к. устраняет все вышеприведенные недостатки — электроэнергия отдается в домашнюю электросеть и потребляется другими устройствами.

Как это работает, подробности под катом. Желающие также могут просмотреть краткую видеоверсию в youtube.

Grid tie инвертор

Схема подключения инвертора к электросети очень проста:

По сути grid tie не сильно отличается от обычного преобразователя 12-220В, хотя есть несколько существенных отличий:

— grid tie синхронизируется с периодами сетевого напряжения,
— grid tie автоматически прекращает выработку, если сеть отключается (из соображений безопасности, например если сеть обесточили для ремонта),
— grid tie может использовать технологию MPPT (maximum power point tracking) и находить точку отдачи максимальной мощности для солнечных панелей.

Чем в итоге удобно использование grid tie?
— Уменьшаются счета за электричество: потребление дома от городской сети уменьшается на величину, соответствующую выработке инвертора.
— Уменьшается нагрузка на городскую электросеть.
— Система проста в подключении и эксплуатации.

На рынке есть 2 вида инверторов:

— «Стандартные» (название условно), которые ставятся в доме, и к ним подается напряжение от панелей. Мощность может варьироваться от 250Вт до нескольких киловатт, цена вопроса от 60$ до 6000$.

— Микроинверторы. Ставятся прямо на панель, таким образом прямо с панели получается сетевое напряжение 220В. Способ удобен тем, что не нужно тянуть толстые провода низкого напряжения, ну и надежность системы в целом получается выше.

Система легко параллелится и расширяется, примерно так:

В общем, все это достаточно интересно чтобы протестировать.

Тестирование

Перед тестированием «балконной» системы выявилась одна проблема — инверторов для такого малого масштаба просто не производят. Типичные параметры grid tie инвертора — мощность от 250Вт и напряжение панелей 22-65 или 45-90В. У меня же 2 параллельно соединенные солнечные панели по 50Вт давали 12-21В. Наконец, после поисков на ebay была найдена практически единственная модель с длинным названием 500W MPPT Micro Grid Tie Inverter 10.5-28V. Слово «micro» тут явно маркетинг, т.к. возможности крепления на панели не предусмотрено. Инвертор выглядит примерно так (фото со страницы продавца).

И собственно, тестирование. Все просто, инвертор подключается в розетку через ваттметр, который удобен для оценки показаний. Солнечные панели выходят на восточную сторону, и уже в 9 утра при солнечной погоде выработка составила 30Вт.

Все хорошо, я только успеваю порадоваться «до чего техника дошла», как слышу весьма громкий шум — в инверторе включился кулер. На габаритах инвертора китайцы сэкономили, и высокооборотный 40мм кулер дает такой шум и свист воздуха, что его слышно в соседней комнате. Конечно, в идеале обороты кулера должны были бы регулироваться в зависимости от температуры инвертора, но в моем случае это не работало. Т.к. использовать инвертор на полную мощность 500Вт я не планирую, то просто заказал другой, менее шумный кулер, которого для 100-200Вт вполне должно хватить.

Кстати, внутренности инвертора выглядят так:

Вот так нагреваются его части во время работы, температура компонентов до 40 градусов:

Это в принципе немного, с другой стороны, и мощность всего лишь 1/10 от максимальной. Было бы интересно проверить его нагрев при полных 500Вт, но такой возможности нет.

Другой недостаток проявился вечером, когда солнечные панели дают мало энергии — инвертор пытается включиться, загорается светодиод, но напряжение панелей от нагрузки проседает и он выключается, затем процесс повторяется снова. Вряд ли такие включения-выключения полезны для электронных компонентов, с другой стороны, ничего сильно страшного тут в принципе нет. Разработчики могли бы предусмотреть более интеллектуальный способ отключения инвертора, с другой стороны, это самая дешевая модель на рынке, да и работа от 100Вт панели для 500-ваттного инвертора не является штатной.

Итог: судя по ваттметру, целиком за солнечный день в сеть со 100-ваттной панели было отдано 0.25КВт*ч. В ценах на электричество желающие могут пересчитать сами, как и срок окупаемости инвертора (его цена около 80$). Пиковая мощность, зафиксированная ваттметром, составила 65Вт, а средняя мощность в утреннее время (панели направлены на восток) 30-40Вт. (Теоретически, со 100-ваттной панели можно получить 80-90Вт мощности, если развернуть ее более правильным образом и использовать более толстые провода).

Следующий день был пасмурным с дождем, и инвертор вполне ожидаемо, не запустился вообще. Он пытался включиться утром каждые 5 секунд, запуская при этом кулер, и «вззз-вззз» было слышно по всей комнате. В общем, с таким инвертором будильник по утрам точно не нужен. Хотя это не проблема инвертора как такового — во-первых, 500-ваттный инвертор просто не рассчитан на использование 100-ваттной панели, во-вторых, он не предназначен для установки в комнате.
Когда дождь закончился и небо относительно прояснилось, инвертор запустился, отдаваемая в сеть мощность составила около 12Вт.

Заключение

Технология grid tie работает, почти как ожидалось, даже с небольшими панелями балконного размера. «Почти», т.к. мощности панелей недостаточно для работы инвертора на полную мощность. В то же время, даже в таком виде инвертор работает, отдавая в сеть энергию уже при 10-20Вт выработки. Для моих балконных панелей пиковая мощность, зафиксированная ваттметром, составила 65Вт, а средняя в утреннее и солнечное время суток примерно 30-40Вт.

В ясный солнечный день в сеть со 100-ваттной панели было отдано 0.25КВт*ч. Кстати, 0.25КВт*ч это много или мало? Этого достаточно для 15 минут работы микроволновки, 30 минут работы компьютера, 24 часов работы светодиодной лампы или 2-3 использований небольшого электрического чайника.

Однако показанный выше инвертор я не могу рекомендовать для балконной установки — лучше брать микро-инвертор, не содержащий кулеров, ну и мощность панелей должна составлять не менее 200Вт при напряжении 20-40В.

PS: C отдачей электроэнергии в сеть есть еще один интересный вопрос — что будет если суммарная выработка панелей больше, чем потребляемая мощность?

Ответ не так прост как кажется, тут есть 2 варианта.

Если установлен обычный счетчик, то он просто считает энергию «по модулю», так что излишки энергии уйдут в общедомовую сеть к соседям, а счетчик просуммирует ее как потребленную — за отданную соседям энергию еще и придется заплатить (что конечно обидно).

Современные счетчики умеют считать «экспорт» и «импорт» электроэнергии, эти пункты показаний есть отдельно в меню. В идеале, это должно учитываться при платежах и расчетах. Увы, возможность экспорта энергии в сеть в РФ пока что официально отсутствует. В Европе такая возможность разумеется, есть. Из стран СНГ реализация электроэнергии доступна в Армении, Украине, Казахстане и Белоруссии. Поэтому устанавливая grid tie инвертор, нужно либо рассчитывать мощность так, чтобы вся она потреблялась домашними устройствами, либо устанавливать дополнительный модуль (grid tie limiter), предотвращающий отдачу в сеть если она больше потребляемой. В России решить вопрос с экспортом электроэнергии обещали в 2018 году, как оно будет, пока неизвестно. Очевидно, что из всех проблем, это не самая насущная в стране, так что быстрого решения вопроса не предвидится. Пока что, как подсказывает гугл, в России есть только один дом, владелец которого в частном порядке оформил возможность экспорта энергии в сеть, но это скорее исключение. В случае балкона, о реализации излишков речи конечно не идет, но даже 50-100 ватт энергии вполне могут пригодиться для компенсации работы WiFi-роутера или мини-сервера, не говоря уже о холодильнике.

Следующей в очереди на тестирование стоит батарея ионисторов, которую планируется использовать для накопления электроэнергии. Что из этого получится, я не знаю сам. Также планируется выложить на youtube видеодемонстрации работы системы, но это занимает больше времени чем планировалось.

Солнечный инвертор

Пост опубликован: 17 ноября, 2017

В настоящее время альтернативная энергетика все более прочно входит в повседневную жизнь современного человека и причин тут несколько. Это и экологическая безопасность подобных производств, и возможность создать автономную систему электроснабжения, которая, по истечении срока окупаемости, может приносить определенный доход пользователю.

Одним из видов производства электрической энергии, использующем альтернативный и возобновляемый источник, является солнечная энергетика, а одним из устройств, обеспечивающим работу солнечной электростанции в автоматическом режиме, является инвертор.

Что это такое

Солнечный инвертор – это техническое устройство, служащее для преобразования постоянного электрического тока, напряжением 12/24/48 В, вырабатываемого солнечными батареями, в переменный, используемый для освещения и питания различных приборов и устройств напряжением 220/380 В.

Зачем он нужен

Работа солнечной электростанции в качестве основного или резервного источника электроснабжения, предполагает подключение определенного количества нагрузки, в качестве которой выступают бытовые приборы и технические устройства, для работы которых требуется переменный ток напряжением 220/380 В.

В свою очередь, солнечная батарея (панель), вырабатывает постоянный ток напряжением более низкого порядка, посредством которого заряжаются аккумуляторные батареи, входящие в состав солнечной электростанции (накопители выработанного электричества).

Схема работы солнечной электростанции приведена на рисунке:

Для того, чтобы преобразовать, накопленную в аккумуляторах электрическую энергию, в параметры, соответствующие параметрам подключаемых устройств, и служат технические устройства, называемые инверторами.

Типы солнечных инверторов

Инверторы, для солнечных электростанций, производятся в различной исполнении и отличаются друг от друга по техническим характеристикам, стоимости и наличию средств автоматики и защиты. А вот типов подобных устройств, определяющих их способность работать по отношению к традиционной сети электроснабжения (от энергоснабжающих организаций), всего три, это:

  1. Автономные («off grid») – способны работать только отдельно от внешних электрических сетей, используются для автономных систем электроснабжения.
  2. Сетевые («on grid») –работают в синхронном режиме с внешней сетью электроснабжения. Инверторы данного типа, кроме своей основной функции, (преобразования напряжения), контролируют качество электрической энергии внешней сети (напряжение и частота), а также способны передавать излишки генерированной энергии для реализации во внешнюю сеть электроснабжения.
  • Гибридные («hybrid») – совмещают в себе функции автономных и сетевых устройств, обладают большим количеством настроек, позволяющих отрегулировать различные режимы работы.

Инверторы сетевого типа

Отличительной особенностью сетевых инверторов является характер их работы по отношению к вешней электрической сети.

Устройства данного типа устанавливаются в электрическую цепь между солнечной панелью и электрической сетью 220/380 В. Установка сетевого инвертора предполагает работу солнечной электростанции без наличия накопителей энергии (аккумуляторов), когда выработанный солнечными батареями ток идет на питание отдельных потребителей, подключаемых непосредственно к инвертору, а излишки – во вешнюю сеть. Работа такого устройства осуществляется только в дневное время, когда есть солнечный свет.

Инверторы автономного типа

Инверторы автономного типа работают в составе солнечных электростанций, обеспечивающих автономное электроснабжение потребителей электрической энергии. Технические устройства данного типа преобразуют накопленную в аккумуляторах энергию до требуемых параметров и обеспечивают надежность автономного электроснабжения.

В зависимости от формы выходного сигнала по току, инверторы данного типа подразделяются на: синусоидальные и квази-синусоидальные.

Синусоидальные инверторы обладают лучшими техническими показателями, но больше по габаритным размерам и стоимости, нежели квази-синусоидальные, что определяет сферу их использования и распространение на рынке подобных устройств.

Основные технические характеристики

При выборе типа инвертора и возможности его установки в той или иной схеме электроснабжения, основными параметрами, определяющими выбор, служат его технические характеристики, каковыми являются:

  • Мощность – определяет количество нагрузки (приборов и устройств), которое можно подключить к конкретному устройству. Номинальная мощность, указывает на длительно допустимую нагрузку, при подключении которой инвертор способен работать продолжительное время. Максимально допустимая (пиковая) мощность, определяет способность преобразовывать электрический ток не продолжительное время, в моменты запуска электрических двигателей или иных устройств, при включении которых в работу происходит скачек электрического тока (ток запуска).
  • Вид выходного сигнала (форма синусоиды) – определяет возможность подключения того или иного оборудования к конкретной модели инвертора. При использовании более дешевых устройств, с квази-синусоидальной формой сигнала по электрическому току, возможны сложности в процессе эксплуатации приборов и агрегатов, чувствительных к качеству электрического тока (отопительные котлы, насосы, электронные устройства).
  • Напряжение на входе и выходе – определяет возможность установки с определенным видом солнечных панелей, вырабатывающих электрический ток напряжением 12/24/48 В, и в соответствии с этим, напряжением сети питания потребителей – 220 и 380 В.
  • Наличие защитных элементов – зависит от конкретной модели устройства. Основными видами защиты являются – защита от короткого замыкания и перегрузки.
  • Дополнительные опции – также зависит от модели устройства. Это может быть установка встроенной розетки, жидкокристаллического дисплея, зарядного устройства и прочих элементов.

Популярные модели

Каждый пользователь выбирает для себя сам какую модель выбрать и где ее купить. Конечно же оптимальным местом для выбора и приобретения сложных технических устройств, к каковым относится солнечный инвертор, являются компании дилеры производителей подобных изделий, но не везде они присутствуют, поэтому можно воспользоваться сетью интернет, где можно найти модель, соответствующую предъявляемым к ней требованиям.

В настоящее время наибольшей популярностью пользуются серии и модели:

  • «СибВольт» (Россия) – сетевые инверторы, номинальной мощностью от 1,5 до 3,0 кВт, на напряжение 12/24/48 В.
  • «Sunrise» (Китай) – гибридного типа, номинальной мощностью 3,2 и 4,0 кВт, на напряжение 48 В.
  • «UMA» (Россия) – автономного типа, номинальной мощностью от 2,4 до 4,0 кВт, на напряжение 24/48 В.
  • «S300» (Тайвань) – автономного типа, номинальной мощностью 300,0 Вт, на напряжение 12/24 В.
  • «Stark Country» (Китай) — гибридного типа, номинальной мощностью от 1,6 до 4,0 кВт, на напряжение 12/24/48 В.
  • «Sunville SV15000s» (Россия) – сетевое устройство, номинальной мощностью 15,0 кВт.

Серии и конкретные модели, на рынке подобных товаров, представлены достаточно обширно, как в плане технических характеристик, так и компаний их выпускающих. В связи с этим всегда есть возможность выбрать устройство в соответствии с личными пожеланиями пользователя основываясь на критериях выбора рассмотренных ниже.

Как выбрать лучший?

Как уже было указано выше, на рынке подобных устройств, представлено большое количество моделей различных производителей, которые схожи по своим техническим характеристикам. Для того, чтобы выбрать инвертор, и при этом не ошибиться, необходимо следовать критериям выбора, которыми являются:

  1. Номинальная мощность.
  2. Максимальная (пиковая) мощность.
  3. Форма выходного сигнала по току.
  4. КПД.
  5. Эксплуатационные показатели (температура, влажность, высота установки над уровнем моря).
  6. Напряжение на «входе» и «выходе» устройства.
  7. Наличие средств защиты от токов КЗ и перегрузки.
  8. Наличие «спящего» режима, вентилятора охлаждения и дополнительных опций.
  9. Габаритные размеры и вес.
  10. Бренд и надежность производителя.
  11. Стоимость.

Опираясь на выше приведенные критерии и зная параметры сети, каждый пользователь способен самостоятельно выбрать лучшую модель, из представленных, в настоящее время, в конкретном регионе или на интернет ресурсах.

Подключение инвертора к солнечной батарее

Инвертор является устройством, работающим в комплексе с другими элементами солнечной электростанции, которыми являются:

  • Солнечная панель – источник электрической энергии;
  • Аккумуляторная батарея – накопитель выработанной энергии;
  • Контроллер заряда – отвечает за состояние аккумуляторных батарей, контролирует режим их работы — «заряд-разряд»;
  • Провода и кабели – обеспечивают соединение всех устройств в единую электрическую цепь;
  • Несущие конструкции – обеспечивают надежное крепление монтируемого оборудования, некоторые устройства, позволяют регулировать положение солнечных панелей в пространстве, в соответствии с расположением солнца.

Подключение инвертора в схему работы электрической станции, зависит от типа устройства, т.е. способности работать по отношению к внешней электрической сети.

Подключение, в зависимости от типа инвертора, выполняется по следующей схеме, для:

  • Автономных («off grid») моделей.
  • Модели данного типа устанавливаются между нагрузкой и аккумулятором, зарядка которого также осуществляется через контакты инвертора. У некоторых моделей, как показано на рисунке, может быть предусмотрен отдельный вход для подключения к электрической сети переменного тока, для обеспечения зарядки аккумуляторов, в случае невозможности их заряда от солнечных батарей.
    • Сетевых («on grid») моделей.

    Инверторы данного типа, включаются в электрическую цепь между солнечной батарей и элементами нагрузки и внешней электрической сетью. У данного типа устройств не предусмотрено подключение аккумуляторных батарей. В случаях, когда количество вырабатываемой электрической энергии превышает требуемые значения, излишки перераспределяются во внешнюю сеть.

    • Гибридных («hybrid») моделей.

Гибридный тип подобных устройств, предполагает установку инвертора между аккумуляторами, внешней сетью и нагрузкой одновременно.Использование инвертора, в схемах солнечных электростанций, позволяет осуществлять их работу в автоматическом режиме, что значительно упрощает их использование и расширяет сферу применения.

Сетевой инвертор — что это и как работает?

  • 02 сентября 2016 09:05:58
  • Отзывов:
  • Просмотров: 7443

Сетевыми (или grid-tie) инверторами являются устройства, преобразующие постоянное (DC) напряжение от возобновляемых источников энергии (фотомодулей, ветроустановок или микроГЭС) в переменное (AC) напряжение, и передающие его напрямую в сеть 220 (или 380) В, тем самым снижая потребление электроэнергии от энергосетей.

Сетевые инверторы также называют синхронными преобразователями, так как они обладают отличительной особенностью — наличием синхронизации выходного напряжения и тока со стационарной сетью.

Таким образом, сетевой инвертор осуществляет преобразование постоянного тока от солнечных батарей и других возобновляемых источников энергии в переменный, с надлежащими значениями частоты и фазы для сопряжения со стационарной сетью. Как правило, преобразование осуществляется с помощью PWM — широтно-импульсной модуляции.

Принцип работы сетевого инвертора состоит в перетекании тока, синхронизированного по частоте и фазе, при этом напряжение инвертора должно быть чуть выше напряжения в сети. Это становится возможным с помощью замера и повышения напряжения на выходе сетевого инвертора до текущего значения потока выходной мощности от источника постоянного тока.

В целях безопасности сетевые инверторы оборудуются так называемой anti — islanding защитой: в случае выхода сети из строя, либо выхода уровней напряжения или частот за допустимые пределы, автоматический выключатель отключает выход от сети.

Срабатывание данного вида защиты зависит от настроек инвертора и условий сети. В худшем случае — если напряжение в сети опускается ниже 0,5 от номинального, а частота отклоняется на 0,5 -0,7 Гц от номинального значения, сетевой инвертор должен остановить процесс генерации электроэнергии в сеть не менее чем за 100 миллисекунд.

Для того, чтобы снизить потери на преобразование постоянного напряжения в переменное, сетевые инверторы функционируют при высоких входных напряжениях – ближе к напряжению в сети. Кроме того, обычно они оборудованы встроенной системой отслеживания точки максимальной мощности солнечных батарей. Данная система слежения (Maximum Power Point Tracking (MPPT)) позволяет определять наиболее оптимальное соотношение напряжения и тока, снимаемых с солнечных модулей, тем самым позволяя получать максимум энергии при любых внешних изменениях метеоусловий, в результате этого генерация от солнечных панелей в сеть осуществляется даже в пасмурную погоду.

В настоящее время сетевые инверторы находят широкое применение для экономии электроэнергии на производствах, в офисах, в торговых центрах и т.п. Сетевые фотоэлектрические системы строятся на таких объектах мощностью от 500 Вт и выше.

Сетевые солнечные инверторы промышленного назначения используют для передачи энергии от возобновляемых источников энергии в 3-х фазную сеть. В настоящее время для промышленного использования производят сетевые инверторы мощностью до нескольких сотен кВт. Подобные инверторы (преобразовательные станции) построены по модульному принципу, с целью минимизации потерь и извлечения максимальной эффективности использования солнечной энергии.

Основные характеристики сетевых инверторов

  • Номинальная выходная мощность – мощность, получаемая от данного инвертора.
  • Выходное напряжение – показатель, определяющий к какой сети по напряжению может быть подключен инвертор. Для небольших инверторов (бытового назначения) выходное напряжение обычно равно 240 В. Инверторы для промышленного назначения рассчитаны на 208, 240, 277, 400 или 480 В, кроме того их можно подключать к 3-х фазной сети.
  • Максимальная эффективность — наивысшая эффективность преобразования энергии, которую может обеспечить инвертор. Максимальный КПД большинства сетевых инверторов составляет более 94%, у некоторых — до 97%.
  • Взвешенная эффективность — средняя эффективность инвертора, этот показатель лучше характеризует эффективность работы инвертора. Этот показатель важен, так как инверторы, способные преобразовывать энергию при различных выходных напряжениях переменного тока, имеют разную эффективность при каждом значении напряжения.
  • Максимальный входной ток — максимальное количество постоянного тока, которое может преобразовывать инвертор. В случае, если какой-либо возобновляемый источник (например, солнечная панель) будет производить ток, превышающий это значение, сетевой инвертор его не использует.
  • Максимальный выходной ток — максимальный непрерывный переменный ток, производимый инвертором. Этот показатель используют для определения минимального (номинального) значения перегрузки по току устройств защиты (к примеру, выключателей или предохранителей).
  • Диапазон отслеживания напряжения максимальной мощности — диапазон напряжения постоянного тока, в котором будет работать точка максимальной мощности сетевого инвертора.
  • Минимальное входное напряжение — минимальное напряжение, необходимое для включения инвертора и его работы. Этот показатель особенно важен для солнечных систем, так как разработчик системы должен быть уверен, что для произведения этого напряжения в каждой цепочке последовательно соединено достаточное количество солнечных модулей.
  • Степень защиты IP (или код исполнения) – характеризует степень защиты корпуса от проникновения внешних твердых предметов (первая цифра), а также воды (вторая цифра)

Подбор солнечного сетевого инвертора

Какой солнечный инвертор можно назвать сетевым?

Сетевыми (grid-tie) инверторами являются устройства, которые преобразовывают постоянное (DC) напряжение, полученное от возобновляемых источников энергии, в переменное (AC) и передают его напрямую в сеть 220 (или 380)В.

В основном бытовые электроприборы являются потребителями переменного тока.

Для частных домов применяют солнечные сетевые инверторы мощностью до 30кВт. Такие инвертора работают следующим образом: выработаную солнечными батареями электроэнергию преобразовывают и сбрасывают её в внутридомовую сеть откуда потребиели электроэнергии запитываються, если образовываються излишки энергии, то сетевой инвертор направляет её во внешнюю сеть через двунаправленый прибор учета для продажи по «зеленому» тарифу.

Принцип работы сетевого инвертора состоит в перетекании тока, синхронизированного по частоте и фазе, при этом напряжение инвертора должно быть чуть выше напряжения в сети.

В целях безопасности сетевые инверторы оборудуются так называемой anti — islanding защитой: в случае выхода сети из строя, либо выхода уровней напряжения или частот за допустимые пределы, автоматический выключатель отключает выход от сети.

Для того, чтобы снизить потери на преобразование постоянного напряжения в переменное, сетевые инверторы функционируют при высоких входных напряжениях – ближе к напряжению в сети. Кроме того, обычно они оборудованы встроенной системой отслеживания точки максимальной мощности солнечных батарей. Данная система слежения (Maximum Power Point Tracking (MPPT)) позволяет определять наиболее оптимальное соотношение напряжения и тока, снимаемых с солнечных модулей, тем самым позволяя получать максимум энергии при любых внешних изменениях метеоусловий, в результате этого генерация от солнечных панелей в сеть осуществляется даже в пасмурную погоду.

Сетевые инверторы промышленного назначения используют для передачи энергии от возобновляемых источников энергии в 3-х фазную сеть. В настоящее время для промышленного использования производят сетевые инверторы мощностью до нескольких сотен кВт.


Подбор сетевого инвертора для дома

При выборе солнечного сетевого инвертора в первую очередь стоит обратить внимание на разрешенную мощность по договору с энергоснабжающей компанией. Если по договору мощность 1,3 кВт (стандартное подключение, 1 фаза), то инвертор сетевого типа должен соответствовать этой мощности. В противном случае оформить «зеленый» тариф не получиться и выработанную солнечными панелями энергию можно будет использовать только на собственные нужды. Также в случае использования сетевого инвертора без подключения к «зеленому» тарифу необходимо приобрести специальный измерительный счетчик (METER или EZMETER) с функцией «PowerLimiting». Это функция ограничения генерируемой мощности, отдаваемой в сеть.

Используя METER или EZMETER, сетевой инвертор измеряет отдаваемую мощность в питающую сеть и подстраивает генерацию энергии, в зависимости от установленного ограничения. Есть несколько компаний, которые имеют такие измерительные счетчики для использования с сетевыми инверторами т.к. GoodWe и Fronius.

Если же задачей является продажа в сеть по «зеленому» тарифу и заработок, то сетевой инвертор необходимо подбирать по следующим параметрам:

  1. Мощность инвертора не больше разрешенной мощности (можно повысить до 30 кВт);
  2. Потребляемая домовой нагрузкой электроэнергия должна быть не больше генерируемой солнечными батареями и выдаваемой сетевым инвертором;
  3. Инвертор должен быть сертифицированным;
  4. Инвертор должен быть смонтирован организацией имеющей лицензию на строительство объектов 4 и 5 категории сложности.

Для солнечных станций под «зеленый» тариф можно использовать:

  1. Европейские инверторы: Fronius (Австрия), АВВ (Италия), SMA (Германия), Delta (Нидерланды) Kaco (Германия), Kostal (Германия) и многие другие.
  2. Китайские инвертора: Huawei , GoodWe, Trannergy, АKSG и многие другие.

Посмотреть цены и описания

При постройке солнечной электростанции выберайте не только оборудование, но и компанию которая смонтирует этот инвертор, введет станцию в эксплуатацию и будет нести гарантийные обязательства перед своими клиентами. Обращайте внимания на наличие реализованных объектов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *