Симисторный регулятор мощности для тэна

Мощный симисторный регулятор мощности

Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.

Схема мощного симисторного регулятора мощности

Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.

В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?

В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.

Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.

Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А. Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами. Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.

Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше. И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.

Для сведения, медный провод сечением 2.5мм 2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.

Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.

Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см 2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов. Температура достигла 90 0 С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу. Иначе получим настоящую печь.

Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.

Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.

Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.

Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.

Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.

О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.

Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.

В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм 2 .

Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.

Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.

Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».

Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.

Выводы симистора, при его монтаже, рекомендуется делать как можно короче.

Вывод.

Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…

Печатная плата регулятора мощности СКАЧАТЬ

Регулятор напряжения для тена от 1 до 6 кВт

Регулятор напряжения в электрических цепях, служит для изменения мощности, подаваемой в нагрузку. С помощью регулятора напряжения можно управлять скоростью вращения электродвигателей, уровнем освещенности и нагревательными приборами такие как паяльник, электрическая плитка, тэн. В радиомагазинах можно купить готовое изделие но сделать регулятор напряжения своими руками не сложно.

В процессе самогоноварения выяснилось что на газу процес нагревания браги происходит достаточно долго (около 2-х часов) и к тому же, неудобно регулировать процесс дистилляции браги, газовой плиткой. В следствии чего возникла острая необходимость в модернизации самогонного(дистиллятного) аппарата, врезкой в него электрического нагревателя. Изначально задумывалось, что тен будет ставится мощностью 3 kW но в дальнейшем передумали и уменьшили до 2500 ватт. Далее нам понадобилась регулировка напряжения для управления процессом дисциляции, её мы решили изготовить своими руками, благо схем в общем доступе полно, они простые, минимум деталей и изготовление много времени не занимает.

Схема регулятора напряжения на 220 вольт

  • Рисунок 1. Схема.

Схема состоит из симистора, BTA41-800B по названию можно определить его параметры ток и напряжение. Например BTA это обозначение симистора, 41 это его ток в амперах и 800B это его напряжение. Симистор можна заменить на более слабый ток для этого нужно мощность вашего тена разделить на напряжение, например: 2 кВт разделить на напряжение в сети 220 вольт мы получим нужный нам ток 2000/220=9,1 Ампер. В этом случае мы можем использовать другой симистор BTA12-600B, но так как симистор будет работать практически на пределах своих возможностей, он будет греться и придется закрепить его на радиатор, в противном случае он может выйти из строя.

  • Рисунок 2. Схема с вольтметром.

Примечание.В схеме можно применять любой симистор не менее 600B и током в зависимости применяемого нагревательного элемента. В любом случае для облегчения работы симистора его следует разместить на радиаторе охлаждения. Дополнительно можно поставить вольтметр на выход схемы, чтобы видеть изменение напряжения наглядно и на вход поставить автомат на 16-25 ампер.

Детали для схемы:

1.Симистор выбираем от нагрузки но можете как в моем случае чем больше тем лучше BTA8-600b, BTA12-600b, BTA16-600b, BTA20-600b, BTA24-600b, BTA25-600b, BTA26-600b, BTA40-600b, BTA41-600b.

2.Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом (МОм). Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм.

3.Динистор DB3 у него нет полярности припаиваем как хотим.

4.Резистор 10 кОм.

5.Конденсатор керамический 0,1 мкФ.

Изготовление схемы

  • Рисунок 3. Схема в моем исполнение.

Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током (как и во всем электрическом).

И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме. Останется прикрепить симистор на радиатор. Я взял радиатор из старого блока питания телевизора. И останется самое сложное найти корпус и разместить схему в нем. На собирание схемы по времени у меня ушло буквально 15 минут.

  • Рисунок 4. Схема регулятора мощности в моем исполнение.

Примечание. Эта схема часто встречается в пылесосах, китайских точильных станках.

  • Рисунок 5. Регулировка с пылесоса.

Как происходит процесс регулировки напряжения в дистилляторном аппарате.

На начальном этапе нагреватель включаем на полную мощность. После достижения температуры (78,8) градусов, что соответствует точки кипения этилового спирта, мощность нагревателя уменьшаем. Опытным путем меняя положения регулятора, нужно добиться того, чтобы весь выделяющийся пар конденсировался системой охлаждения. Это поможет избежать лишних потерь спирта и в то же время при правильно подобранной мощности позволит сократить время производства до возможного минимума.

Как сделать регулятор мощности для тэна 3 квт своими руками

Отправим материал на почту

Недавно «по производственной необходимости», искал схему самодельного регулятора мощности, и делал само устройство. Результатом остался вполне доволен, и дальше расскажу о том, как своими руками сделать регулятор мощности.

Немного про симисторный регулятор мощности способы его применения

Симисторные регуляторы мощности, которые теперь следует называть диммеры, наш заполонили радиорынок.

Сегодня подобные устройства можно встретить даже в отделах по продаже дистилляторов, ведь диммеры иногда используют для регулировки температуры нагрева материала в перегонных аппаратах.

Также эти регуляторы мощности используются в электронагревателях водяных баков, инкубаторах, вулканизаторах для заклеивания автомобильных камер, в инструментах – паяльниках для плавной регулировки нагрева, в дрелях и болгарках для контролирования скорости вращения, в простых лампах накаливания для регулировки яркости и даже в самогонных аппаратах.

Если вкратце, то способов применения у регуляторов мощности огромное количество, диммеры весьма полезны в хозяйственной и технической деятельностях и являются необходимыми устройствами для каждой мастерской.

От чего зависит его мощность

Дальше будет про нюансы, коих всего три, и от которых может зависеть мощность диммера как заводского, так и самодельного.

Первый нюанс – запас мощности симистора.

Он должен быть около 30% для качественной работы, при этом разница в их цене будет незначительной.

Для примера можно взять стандартную ситуацию – вы заказываете симистор у продавца, он же в свою очередь будет утверждать, что его мощность достигает 4 кВт.

При этом он будет использовать различные уловки, например, сфотографирует близко для обмана зрения и теплоотвод будет казаться больше, чем он есть на самом деле.

Конечно, если включить такой диммер на полминуты, то он может и выдержит.

Однако обычно к нему подключают лампы накаливания или ТЭН, которые работают часами при такой мощности.

Такие регуляторы не выдержат, они даже на 3кВт будут максимально греться, а после просто перегорят.

Вы должны понимать, что такое 40 кВт, а также то, что регулятору придётся пропускать через себя 18 ампер и то, какое сечение должно быть у проводов для того, чтобы пропускать такой ток.

Второй нюанс был немного задет в прошлом абзаце, но всё же – сечение проводов и дороже печатной платы.

Чем сечение проводов и дорожек шире и толще – тем лучше, при этом чем сами эти дорожки и провода короче – тем также лучше.

При их пайке обязательно нужно их лудить оловом или паять вдоль дорожек медную жилку.

Дополнительно, если вы работаете с устройством на 3 000 Вт или более, то лучше отказаться от различных клемм для зажима и всяких разъёмов.

Ведь эти места становятся уязвимыми зонами – если контакт немного ослабнет, то происходит их нагревание, а после обгорание проводов, что, естественно, нежелательно.

Третий нюанс в теплоотводе.

Если теплоотвод для вашего собственноручно изготовленного диммера недостаточно большой площади, то через долговременное использование всё устройство будет крайне сильно греться (температура может доходить 90 градусов цельсия и выше), это будет настоящая печь.

Поэтому советую использовать в качестве теплоотвода радиатор от компьютера с кулером.

Подобные замены теплоотводу, даже небольшие, покажут хороший результат при долговременной работе на мощности 4 000 Вт, в то время как китайские радиаторы в теплоотводах позволят не выйти из строя устройству в ближайшие минуты после запуска на такой мощности.

Дополнительно немного расскажу о стеклянных предохранителях.

Коротко о главном! Не советую.

Вывел как-то держатель предохранителя с колпачком на заднюю панель, предохранитель поставил на 15 ампер, нагрузка была около 3 кВт.

В результате весь узел так сильно грелся, что рукой не прикоснуться.

Поэтому лучше ставить вместо стеклянных предохранителей автоматические выключатели (если нагрузка 3 000 Вт, то выключатель на 16 ампер).

Схема регулятора мощности

Основным элементом регулировки является симистор BTA06-600, который же и триак.

Вы же можете его заменить на почти любой симистор из серии BTA, к примеру BTA12-60, BTA24-600 и другие.

При этом можно не проводить пересчёт номиналов элементов.

Покупая симистор, учитывайте то, что первые цифры – максимальный ток, который он пропускает в открытом состоянии.

Вторая же группа цифр – максимальное обратное напряжение данного симистора.

Вот, например, возьмём триак BTA06-600 – получается, что его ток 6 ампер, а напряжение 600 В.

Его хватит для регулировки устройства, нагрузка которого будет мощностью 800 Вт.

Также советую брать запас по току при выборе симистора – изменения в цене будут незначительны, однако надёжность конструкции повыситься.

Мощность резистора R1 должна быть 0,25 Вт для того, чтобы даже при использовании регулятора на 3000 Вт резистор будет холодным.

К переменному резистору нет особых требований, так что можете брать любой, что вам приглянулся.

Конденсатор C1 же должен быть пленочным и с напряжением 400 В.

Предохранитель следует выбрать в зависимости от тока нагрузки.

Светодиод можно не устанавливать в схему, но тогда вместо диода VD1 придётся установить перемычку.

Предохранитель F1 можно установить на отдельной колодке или же на самом проводе, при этом выведя колпачок его корпуса на заднюю панель устройства.

Работа схемы

Во время подключения симистор VD4 закрыт, а ток протекает через предохранитель F1 и резисторы R1, R2, при этом заряжается конденсатор C1.

Как только напряжение на конденсаторе C1 поднимается до 32 В открывается динистор VD3, через который пойдёт ток, открывая при этом симистор VD4.

Симистор будет пропускать через себя ток нагрузки и закроется, как только синусоида пройдёт нулевой потенциал.

После чего весь цикл повторяется.

Меры безопасности

Весь процесс сборки самодельного регулятора мощности должен происходить строго по схеме и инструкции при соблюдении правил безопасности.

Диммер работает при высоком напряжении в 220 вольт, в целях безопасности не касайтесь устройства инструментом, а тем более голыми руками.

Однако знайте, что от фланца и, соответственно, симистор током не бьёт – проверено на личном опыте.

Работоспособность диммера следует проверять на лампах накаливания мощностью от 60 до 80 Вт.

Подключать энергосберегающие, светодиодные или другие лампы, в которых включены пусковые устройства и импульсные преобразователи не рекомендуется.

Немного про охлаждение

Для охлаждения необходим, как ни странно, радиатор охлаждения.

Его следует при крепить к фланцу регулирующего элемента, при этом нанести между ними слой теплопроводной пасты.

Подобрать площадь поверхности радиатора необходимо путём проб и ошибок.

По опыту должен сказать, что если ваш самодельный диммер будет установлен на паяльник, лампу накаливания или другой предмет мощностью до 80 Вт, то можно будет обойтись без радиатора.

Если же регулятор будет использоваться в устройстве мощность регулируемой нагрузки которого достигает 1000 Вт, то потребуется радиатор с площадью 200 сантиметров квадратных, такой радиатор при длительной работе (5 часов) у меня нагревался до 90 градусов цельсия.

Ну и для длительных работ с нагрузкой мощностью 3 кВт я брал такой же радиатор, при этом установил дополнительно вентилятор-кулер из компьютера для охлаждения процессора, питание которому обеспечивалось от миниатюрного выпрямителя. При этом всём температура радиатора была комнатной.

Рекомендую следующее видео, в котором автор самостоятельно изготавливает регулятор мощности своими руками:

Как итог.

Сделать самодельный регулятор мощности для ТЭНа мощностью 3 кВт не трудно. Вы можете самостоятельно в этом убедиться, имея при этом базовый набор технических навыков и умений, а также комплектующих конструкции. Используйте схему, что находится выше, для изготовления столь полезного приспособления, которое можно применить во множестве устройств, например, электронагревателях, инкубаторах, вулканизаторах, паяльниках, дрелях, болгарках, просто в лампах накаливания и много где ещё.

Напишите в комментариях, как вы считаете какой регулятор более качественный и надёжный – самодельный или же фабричный?

Симисторный регулятор мощности с микроконтроллерным управлением

Однажды для одного небольшого домашнего проекта мне потребовался регулятор мощности, пригодный для регулировки скорости вращения электромотора переменного тока. В качестве основы использовалась вот такая плата на базе микроконтроллера STM32F103RBT6. Плата была выбрана как имеющая честный RS232 интерфейс и имеющая при этом минимум дополнительных компонентов. На плате отсутствует слот под литиевую батарейку для питания часов, но приживить его — дело пятнадцати минут.

Итак, начнём с теории. Все знакомы с так называемой широтно-импульсной модуляцией, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД. Лишняя мощность в таком случае просто не будет потребляться, вместо того, чтобы рассеиваться в виде тепла, как при линейном регулировании, представляющем собой не более чем усложнённый вариант реостата. Однако, по ряду причин такое управление, будучи выполненным «в лоб», не всегда подходит для переменного тока. Одна из них — бо́льшая схемотехническая сложность, поскольку требуется диодный мост для питания силовой части на MOSFET или IGBT транзисторах. Этих недостатков лишено симисторное управление, представляющее собой модификацию ШИМ.

Симистор (TRIAC в англоязычной литературе) — это полупроводниковый прибор, модификация тиристора, предназначенный для работы в качестве ключа, то есть он может быть либо открыт, либо закрыт и не имеет линейного режима работы. Основное отличие от тиристора — двусторонняя проводимость в открытом состоянии и (с некоторыми оговорками) независимость от полярности тока (тиристоры и симисторы управляются током, как и биполярные транзисторы) через управляющий электрод. Это позволяет легко использовать симистор в цепях переменного тока. Вторая особенность, общая с тиристорами, — это свойство сохранять проводимость при исчезновении управляющего тока. Закрывается симистор при отключении тока между основными электродами, то есть, когда переменный ток переходит через ноль. Побочным эффектом этого является уменьшение помех при отключении. Таким образом, для открывания симистора нам достаточно подать на управляющий электрод открывающий импульс небольшой, порядка десятков микросекунд, длительности, а закроется он сам в конце полупериода переменного тока.

Симисторное управление учитывает вышеперечисленные свойства этого прибора и заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Заштрихованная на рисунке часть — результат этой процедуры. Таким образом, на выходе вместо синусоиды мы будем иметь что-то, в известной степени напоминающее пилу:

Теперь наша задача — вовремя отпирать симистор. Эту задачу мы возложим на микроконтроллер. Приведённая ниже схема является результатом анализа имеющихся решений а также документации к оптронам. В частности, силовая часть взята из документации на симисторный оптрон производства Texas Instruments. Схема не лишена недостатков, один из которых — мощный проволочный резистор-печка, через который включён оптрон, детектирующий переход через ноль.

Как это работает? Рассмотрим рисунок.

На положительном полупериоде, когда ток через оптрон превышает некоторое пороговое значение, оптрон открывается и напряжение на входе микроконтроллера опускается практически до нуля (кривая «ZC» на рисунке). Когда же ток снова опускается ниже этого значения, на микроконтроллер снова поступает единица. Происходит это в моменты времени, отстоящие на dz от нуля тока. Это dz ощутимо, в моём случае составляет около 0.8 мс, и его необходимо учитывать. Это несложно: мы знаем период T и длительность импульса высокого уровня h, откуда dz = (h — T / 2) / 2. Таким образом, нам необходимо открывать симистор через dz + dP от переднего фронта сигнала с оптрона.

О фазовом сдвиге dP стоит поговорить отдельно. В случае c ШИМ постоянного тока среднее значение тока на выходе будет линейно зависеть от скважности управляющего сигнала. Но это лишь потому, что интеграл от константы даёт линейную зависимость. В нашем случае необходимо отталкиваться от значения интеграла синуса. Решение простого уравнения даёт нам искомую зависимость: для линейного изменения среднего значения тока необходимо менять фазовый сдвиг по закону арккосинуса, для чего достаточно ввести в управляющую программу LUT таблицу.

Всё, о чём я расскажу в дальнейшем, имеет прямое отношение к архитектуре микроконтроллеров серии STM32, в частности, к архитектуре их таймеров. Микроконтроллеры этой серии имеют разное число таймеров, в STM32F103RBT6 их семь, из которых четыре пригодны для захвата и генерации ШИМ. Таймеры можно каскадировать: для каждого таймера одно из внутренних событий (переполнение, сброс, изменение уровня на одном из входных или выходных каналов и т.д.; за подробностями отсылаю вас к документации) можно объявить выходным и направить его на другой таймер, назначив на него определённое действие: старт, стоп, сброс и т.д. Нам потребуются три таймера: один из них, работая в т.н. PWM input режиме, замеряет период входного сигнала и длительность импульса высокого уровня. По окончании измерения, после каждого периода генерируется прерывание. Одновременно с этим запускается связанный с этим событием таймер фазового сдвига, работающий в ждущем режиме. По событию переполнения этого таймера происходит принудительный сброс таймера, генерирующего выходной управляющий сигнал на симистор, таким образом, через каждый полный период переменного тока подстраивается фаза управляющего сигнала. Только первый таймер генерирует прерывание, и задача обработчика сводится к подстройке фазового сдвига (регистр ARR ждущего таймера) и периода ШИМ таймера (также регистр ARR) так, чтобы он всегда был равен половине периода переменного тока. Таким образом, всё управление происходит на аппаратном уровне и влияние программных задержек полностью исключается. Да, это можно было сделать и программно, но грех было не воспользоваться такой возможностью, как каскадируемые таймеры.

Выкладывать на обозрение код всего проекта я не вижу смысла, к тому же, он далёк от завершения. Приведу лишь фрагмент, содержащий описанный выше алгоритм. Он абсолютно независим от прочих частей и легко может быть портирован в другой проект на совместимом микроконтроллере.

И напоследок, видеоролик, показывающий устройство в действии:

Симисторный регулятор мощности своими руками

В статье мы расскажем о том, как изготовить симисторный регулятор мощности своими руками. Что такое симистор? Это прибор, построенный на кристалле полупроводника. У него аж 5 p-n-переходов, ток может проходить как в прямом, так и в обратном направлении. Но эти элементы широкое распространение в современной промышленной аппаратуре не получили, так как у них высокая чувствительность к помехам электромагнитной природы.

Также они не могут работать при высокой частоте тока, выделяют большое количество тепла, если производят коммутацию больших нагрузок. Поэтому в промышленной аппаратуре используют IGBT-транзисторы и тиристоры. Но симисторы тоже не стоит упускать из виду – они дешевые, у них маленький размер, а самое главное – высокий ресурс. Поэтому они могут использоваться там, где перечисленные выше недостатки не играют большой роли.

Как работает симистор?

Вам будет интересно: Подключение стиральной машины к электросети: правила безопасности и порядок работ

Встретить сегодня симисторный регулятор мощности можно в любой бытовой технике – в болгарках, шуруповертах, стиральных машинках и пылесосах. Другими словами, везде, где есть необходимость в плавной регулировке частоты вращения двигателя.

Вам будет интересно: Датчики «Ардуино»: описание, характеристики, подключение, отзывы

Регулятор работает как электронный ключ – он закрывается и открывается с определенной частотой, которая задается схемой управления. Когда прибор отпирается, полуволна напряжения проходит через него. Следовательно, к нагрузке поступает небольшая часть минимальной мощности.

Можно ли сделать самому?

Многие радиолюбители изготавливают своими руками симисторные регуляторы мощности для различных целей. С его помощью можно контролировать нагрев жала паяльника. Но, к сожалению, на рынке готовые устройства встретить можно, но довольно редко.

У них низкая стоимость, но часто приборы не отвечают требованиям, которые предъявляются потребителями. Именно поэтому намного проще, оказывается, не купить готовый регулятор, а сделать его самостоятельно. В этом случае вы сможете учесть все нюансы использования прибора.

Схема регулятора

Давайте рассмотрим простой симисторный регулятор мощности, который можно использовать с любой нагрузкой. Управление фазово-импульсное, все компоненты традиционные для таких конструкций. Нужно применять такие элементы:

  • Непосредственно симистор, рассчитанный на напряжение 400 В и ток 10 А.
  • Динистор с порогом открывания 32 В.
  • Для регулировки мощности используется переменный резистор.

    Ток, который протекает через переменный резистор и сопротивление, заряжает конденсатор с каждой полуволной. Как только конденсатор накопит заряд и напряжение между его пластинами будет 32 В, откроется динистор. При этом конденсатор разряжается через него и сопротивление на управляющий вход симистора. Последний при этом открывается, чтобы ток прошел к нагрузке.

    Чтобы изменить длительность импульсов, нужно подобрать переменный резистор и пороговое напряжение динистора (но это постоянная величина). Поэтому придется «играть» с сопротивлением переменного резистора. В нагрузке мощность оказывается прямо пропорциональна сопротивлению переменного резистора. Диоды и постоянный резистор использовать не обязательно, цепочка предназначена для того, чтобы обеспечить точность и плавность регулировки мощности.

    Как работает устройство

    Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.

    Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора. Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.

    В схеме используются такие элементы:

  • Динистор типа DB3.
  • Симисторы типа ВТ136-600, ТС106-10-4 и аналогичные с номиналом по току до 12 А.
  • Полупроводниковые диоды германиевые – 1N4007.
  • Электролитический конденсатор на напряжение более 250 В, емкость 0,47 мкФ.
  • Переменный резистор 100 кОм, постоянные – от 270 Ом до 1,6 кОм (подбираются опытным путем).

    Особенности схемы регулятора

    Такая схема является самой распространенной, но можно встретить и небольшие ее вариации. Например, иногда вместо динистора ставят диодный мостик. В некоторых схемах встречается цепочка из емкости и сопротивления для подавления помех. Существуют и более современные конструкции, в которых применяется схема управления на микроконтроллерах. При использовании такой схемы вы получаете точную регулировку тока и напряжения в нагрузке, но реализовать ее сложнее.

    Подготовительные работы

    Для того чтобы собрать симисторный регулятор мощности для электродвигателя, вам достаточно придерживаться такой последовательности:

  • Сначала нужно определить характеристики прибора, который будет подключаться к регулятору. К характеристикам можно отнести: число фаз (либо 3, либо 1), необходимость в точной корректировке мощности, напряжение и ток.
  • Теперь нужно выбрать конкретный тип устройства – цифровой или аналоговый. После этого можно осуществить выбор компонентов по мощности нагрузки. В принципе, для моделирования можно использовать специально программное обеспечение.
  • Рассчитайте тепловыделение. Для этого умножьте два параметра – номинальный ток (в Амперах) и падение напряжения на симисторе (в Вольтах). Все эти данные можно найти среди характеристик элемента. В итоге вы получите мощность рассеяния, выраженную в Ваттах. Исходя из этого значения, нужно выбрать радиатор и кулер (при необходимости).
  • Закупите все необходимые элементы или подготовьте их, если они у вас имеются.

    Теперь можно приступить непосредственно к сборке устройства.

    Сборка регулятора

    Прежде чем собрать по схеме симисторный регулятор мощности, нужно выполнить ряд действий:

  • Осуществите разводку дорожек на плате и подготовьте площадки, на которых нужно установить элементы. Заранее предусмотрите места для монтажа симистора и радиатора.
  • Установите все элементы на плате и припаяйте их. В том случае, если у вас нет возможности сделать печатную плату, допускается использование навесного монтажа. Провода, которыми соединяются все элементы, должны быть как можно короче.
  • Обратите внимание на то, соблюдена ли полярность при подключении симистора и диодов. Если отсутствует маркировка, прозвоните элементы мультиметром.
  • Проверьте схему, используя мультиметр в режиме измерения сопротивления.
  • Закрепите на радиаторе симистор, желательно использовать термопасту для лучшего контакта поверхностей.
  • Всю схему можно установить в пластиковом корпусе.
  • Установите в крайнее левое положение ручку переменного резистора и включите прибор.
  • Измерьте значение напряжения на выходе устройства. Если вращать ручку резистора, напряжение должно плавно увеличиваться.

    Как видите, изготовленный своими руками симисторный регулятор мощности – это полезная конструкция, которую можно использовать в быту практически без ограничений. Ремонт этого устройства копеечный, так как себестоимость довольно низкая.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *