Выбор, монтаж и подключение блока защиты ламп от перепадов напряжения в сети
Чаще всего лампочка перегорает при включении, когда нить накаливания еще не разогрелась и ей присуще небольшое сопротивление. Чтобы избежать такого развития событий, придумано аппаратное устройство — блок защиты ламп (его еще называют устройством плавного пуска). Главная задача блока — предотвратить ущерб, причиняемый лампочке в результате скачков напряжения в сети.
Причины перегорания ламп
Лампы накаливания функционируют согласно принципу термоэлектронной эмиссии. При попадании тока в спираль она нагревается, в результате чего продуцируется свет видимой части спектра. Причем мощность тепловыделения обратной пропорциональна диаметру проводника. Вследствие этого утончившиеся участки спирали накаляются очень быстро, что приводит к потере их прочности. Именно истонченные места являются слабым звеном, где и происходит перегорание.
Обратите внимание! К перегоранию ламп приводят не только перепады напряжения, но и такие явления, как наведенная и паразитарная пульсация.

Галогенные лампочки также склонны к перегоранию в результате скачков напряжения. Имеется у таких источников света особенность, присущая только им, — склонность к перегреванию. Чрезмерно разогретая лампочка может перегореть в любой момент.
В защите нуждаются не только лампы накаливания и галогенные светильники, но и светодиодные лампы. На первый взгляд это выглядит странно, ведь у светодиодов отсутствует спираль, и свечение кристалла возникает в результате возбуждения электронов, а не разогревания спирали. Однако в основе принципа действия светодиодов также имеется термоэлектронная эмиссия. По прошествии нескольких лет полупроводниковый участок выгорает и, если присмотреться к ЛЕД-лампе, на ней заметны тусклые кристаллы с пробитым слоем полупроводника.
Принцип работы блока
Блок защиты запускается последовательно с прибором освещения и ограниченно пропускает электричество. Увеличение тока осуществляется постепенно — в течение 1–2 секунд. Без блока ток поступает мгновенно, что часто приводит к перегоранию лампы.
Устройство блока простейшее. Для его функционирования не имеют значения вход-выход, фаза-земля, а также полярность. Устройство следует подключать в последовательном режиме с выключателем, установленным в разрыв фазы.
Прибор плавного включения позволяет:
- Избежать негативного влияния перепадов напряжения при подключении светильника.
- Стабилизировать ток в лампочках после воздействия на них пускового электричества.
- Продлить срок службы источника света.
Немаловажный плюс защитного прибора состоит в том, что он предотвращает мигание лампы. Благодаря этому находиться в освещенном помещении комфортно, так как на глаза не оказывается чрезмерной нагрузки.
Установка и подключение
Монтаж защитного блока обычно осуществляется на потолке, то есть там, где закреплены приборы освещения. Если лампочка не единственная, устройство плавного пуска устанавливают до первого источника света.
Также блоки размещают в монтажных коробах под переключателем света. Однако следует иметь в виду, что для размещения блока в монтажной коробке существует ограничение: максимальная мощность устройства не должна превышать 300 Вт.
Обратите внимание! Какое бы место для установки блока ни было выбрано, к устройству должен быть обеспечен беспрепятственный доступ для проведения ремонтных работ.
Типичная схема подключения блока показана на рисунке ниже.
В случае с переключателем с подсветкой параллельно блоку подключают резистор. Уровень сопротивления для резистора должен находиться в пределах 33–100 кОм, а мощность — не превышать 2 Вт.
Для ламп на 12 вольт также необходим блок защиты. При использовании электромагнитного трансформатора блок ставят в разрыв первичной обмотки. Для электронного трансформатора понадобится специальный блок с четырьмя вводами.
Уровень мощность блока выбирается исходя из суммарной мощности всех потребителей. При этом необходим некоторый запас мощности, обычно в пределах 50% от номинала всех приборов освещения.
Для нормальной работы защитного блока необходимо его охлаждение. Чтобы добиться поступления воздуха, в корпусе создают специальные отверстия.
Меры предосторожности
При перегорании лампочки происходит размыкание нити накаливания, что ведет к короткому замыканию. Вследствие этого существует опасность выхода из строя защитного блока. Чтобы не допустить этого, выполняют следующие действия:
- Защитное устройство устанавливают на максимально доступном участке (подрозетник или щиток). До потолочного блока добраться будет значительно сложнее.
- Устанавливают по выделенному автоматическому выключателю на каждую линию. Номинальный показатель выключателя подбирается с небольшим запасом, поскольку перепады тока при данном варианте подключения не принимаются во внимание.
- Не допускается установка защитного блока в помещениях с повышенным уровнем влажности.

Выбор защитного блока
При подборе подходящего устройства плавного пуска рекомендуется учитывать два фактора — мощность и производителя. О мощности блока сказано выше. Что касается брендов, наибольшей известностью обладают такие компании:
- «Feron» (КНР);
- «Camelion» (КНР);
- «Шепро» (Россия);
- «Гранит 1000», «Гранит 500» (Беларусь);
- «Композит» (Россия);
- «Вжик» (совместное производство России и Китая).

Самые популярные модели выпускаются компаниями «Feron» и «Гранит». Продукция китайского производителя отличается невысокими ценами. Как и большая часть изделий из Китая, блоки от компании «Feron» считаются не слишком качественными. Для них характерны следующие недостатки:
- просадки напряжения, что нарушает работу светильника;
- мигание лампы при подключении и в процессе функционирования;
- регулярные помехи;
- среднее качество пайки;
- экономия на материалах, из которых изготовлен блок.
Продукция белорусской компании считается значительно более качественной. Однако «Гранит» не отличается компактностью, что в некоторых случаях является критически важным недостатком (например, при размещении в подрозетнике выключателя). Также следует отметить стоимость «Гранита» — более высокую, чем у китайских производителей.
Изготовление блока защиты
Схема плавного подключения к сети лампы накаливания довольно проста. Однако в ходе изготовления блока своими руками следует принимать во внимание некоторые технические нюансы. Также нужно соблюдать нормативные акты, касающиеся электротехнических приборов. В качестве примера ниже приведена схема, по которой работает самостоятельно изготовленный блок защиты.
На схеме, изображенной выше, показано плавное включение лампы накаливания. Причем полярность в расчет не принимается. Прибор подключается в разрыв фазы, чтобы создать последовательное подключение с переключателем. Последний должен быть одноклавишным.
При создании блока также необходимо учитывать такие обстоятельства:
- Полевой транзистор в начале работы прибора должен быть закрыт. Данный элемент принимает напряжение стабилизации, так как он включен в диагональ диодного моста.
- Конденсатор С1 получает заряд при прохождении напряжения по резистору R1 и диоду VD1 до достижения уровня 9,1 В. Данный уровень является предельным благодаря ограничивающему действию стабилитрона.
- Когда напряжение доходит до нужного уровня, транзистор понемногу открывается, что приводит к возрастанию тока и сокращению напряжения на стоке. Далее начинается плавный нагрев нити накаливания лампочки.
- Для нормального запуска необходим второй резистор, так как он дает возможность разрядки конденсатора после выключения электропитания светильника. В этот момент напряжение на стоке небольшое — порядка 0,85 В при силе тока около 1 Ампера.
Блок будет работать как в сетях со стандартным напряжением 220 В, так и при пониженном напряжении.
Приборы плавного пуска дают возможность существенно увеличить рабочий ресурс лампочек. Однако их установка сопряжена с соблюдением технических регламентов и требует хотя бы минимальных познаний в электротехнике. Если таковых не имеется, для выполнения монтажа лучше пригласить профессионала.
Блок защиты ламп накаливания

При ремонте в квартире часто встаёт вопрос о выборе освещения — оно должно быть одновременно эстетичным, в меру ярким, но без излишества, и при этом желательно экономным — платить большие счета за электроэнергию из-за постоянно горящего света не хочется никому. Ещё не так давно особого выбора не было — все пользовались лампами накаливания и какие-то другие варианты если и были, то сильно специфичные, дорогие и ненадёжные. Сейчас же производители электротехники предлагают большой ассортимент как светодиодных ламп, которые в последнее время выходят на лидирующие позиции, так и «энергосберегаек», которые также вполне экономичны, но уже постепенно уходят в прошлое. Пользоваться лампами накаливания, казалось бы, в 2020 году нет никакого смысла — они потребляют большую мощность, отдают сравнительно небольшой световой поток, при этом сильно нагреваются и требуют установки в абажуры, либо на расстоянии от легковоспламеняющихся веществ. Но у них есть одно несравнимое преимущество перед светодиодными лампами — их световой поток наиболее естественный для человеческого глаза.
Помимо прочих перечисленных недостатков, лампы накаливания довольно часто перегорают, а если их используется сразу множество в квартире, это может стать целой проблемой, ведь для каждой замены нужно покупать новую, затем лезть к потолку и менять, что также приводит к дополнительным тратам. В лучшем случае внутри лампы просто перегорает спираль и свет гаснет, но также бывают случаи, когда баллон лампы раскалывается и засыпает комнату осколками — редкость, но такое явление также имеет место быть. Чаще всего лампочки перегорают в момент включения — это связано с тем, что холодная спираль имеет значительно меньшее сопротивление, чем уже светящаяся и разогретая до нужной температуры, около нескольких тысяч градусов. Поэтому при щелчке выключателя и подаче напряжения на лампочку происходит бросок тока — ведь изначально спираль холодная, в течение доли секунды она разогревается, сопротивление увеличивается и ток приходит в норму, лампа начинает потреблять номинальную мощность. И хоть этот переходный процесс длится всего долю секунды, иногда его бывает достаточно для того, чтобы бросок тока привёл к перегоранию спирали. Побороть это неприятное явление можно довольно просто — организовав плавное включение лампы, таким образом, чтобы спираль нагревалась постепенно в течение 0,5-1 секунды, это будет уже достаточно для исключения броска тока и перегорания спирали. Кроме того, кому-то такой эффект может показаться весьма приятным, когда после включения лампы свет зажигается не резко и вспышкой бьёт в глаза, а «разгорается» постепенно. Схема такой «приставки» представлена ниже.

Под обозначением EL1 на схеме показана лампа накаливания — здесь она одна, но также можно устанавливать практически любое количество параллельно. Максимальная мощность нагрузки (т.е. лампы или ламп) для данной схемы может достигать 2 кВт, в зависимости от применённых деталей, но об этом подробнее позже. При параллельном включении мощность ламп будет суммироваться, таким образом, максимальные для схемы 2 кВт будут соответствовать 20-ти параллельно включенным лампам, по 100 Вт каждая, либо 40-ка лампам по 50 Вт каждая — то есть мощности с избытком. Подойдёт данная схема для использования с любыми лампами, в основе действия которых лежит излучение света от раскалённой спирали — либо те же лампы Эдисона, либо простые накаливания, либо галогеновые. Схема предназначена для использования в сети 220В — для коммутации низковольтных ламп она не подойдёт.


Всё устройство, плата целиком, помещается в термоусадку, таким образом конечные размеры будут минимальны. Обратите внимание, что при изготовлении самодельных устройств, рассчитанных на работу в сети 220В нужно быть предельно внимательным как в самом процессе сборки, так и при первом включении. Перед подачей напряжения нужно ещё раз проверить правильность всего монтажа, цоколёвку симистор, транзистора, удалён ли лишний флюс с платы, не замыкаются ли где-нибудь на плате дорожки случайно попавшей металлической стружкой. Правильно собранное устройство непременно порадует своей работой, ведь оно просто в изготовлении, не занимает много места и не требует покупки дорогих деталей, зато позволит существенно реже менять перегоревшие лампочки. В архиве ниже представлена два разных варианта печатных плат. Удачной сборки!
Как защитить лампочки от перегорания?

СОДЕРЖАНИЕ:
Одной из причин частого перегорания лампочек является скачок тока во время ее включения. Чтобы увеличить срок службы ламп накаливания и галогенных ламп, можно применить блок защиты, или другими словами, устройство плавного пуска.
Причина перегорания лампочек

Вспомним закон Ома для участка цепи. При включении лампы в сеть 220 (В) через нее начнет протекать пусковой ток, равный 220/52,4 = 4,19 (А).
Время протекания пускового тока зависит от скорости нагрева нити накаливания и составляет в среднем чуть меньше секунды.
За это время нить накаливания успевает нагреться и ее сопротивление увеличивается. И уже в рабочем режиме через лампу накаливания 75 (Вт) протекает номинальный ток, равный всего 0,29 (А).

Пусковой ток в 14,5 раз превышает номинальный ток лампы.
Ситуация с галогенными лампами аналогичная.
Чтобы увеличить срок службы ламп накаливания и галогенных ламп, можно применить блок защиты, или другими словами, устройство плавного пуска, например, Uniel Upb-200W.
Вот о нем мы сегодня и поговорим более подробно. Кстати, его стоимость в розничном магазине составляет около 150 рублей.

Принцип работы блока защиты ламп Uniel Upb-200W
Принцип работы блока защиты галогенных ламп и ламп накаливания заключается в следующем. Напряжение, подводимое к лампе, в течение 2-3 секунд плавно повышается от 0 до 170 (В).
Все предполагают, что напряжение на лампе в рабочем режиме составляет около 220 (В), но при замере выяснилось, что из-за падения напряжения на блоке, на нагрузку приходит всего 170 (В).
Из-за пониженного напряжения 170 (В) увеличивается срок службы лампы, правда при этом значительно снижается яркость лампы.

При уменьшении напряжения лампы всего на 10%, световой поток лампы накаливания уменьшается на целых 45%. А при уменьшении напряжения до 170 (В), яркость лампы уменьшится примерно на 60%.
А лучше вообще перейти на энергосберегающие лампы (КЛЛ, LED), которые имеют явные преимущества перед лампами накаливания и галогенными лампами.
К блоку Uniel Upb-200W можно подключать лампы с суммарной мощностью не более 200 Вт. Рекомендуется придерживаться запаса по мощности на 20-25%.
Например, к этому блоку подключать лампы суммарной мощностью не больше 160 Вт. Так этот блок будет служит дольше.

Лучше не перегружать блок защиты ламп, иначе он будет сильно греться и быстро выйдет из строя.

Место установки блока плавного пуска ламп
Блок защиты галогенных ламп и ламп накаливания можно установить в нескольких местах. Главное, чтобы к нему всегда имелся свободный доступ в случае его замены. Не нужно прятать его за гипсокартонными конструкциями и натяжными потолками.
1. На потолке. Блок можно установить у люстры (светильника) или в ее основании. Этот вариант является более предпочтительным.
2. В распределительной коробке или подрозетнике. Если блок имеет небольшие габаритные размеры, то его можно аккуратно разместить в подрозетнике выключателя или в распределительной коробке.
Размеры блоков напрямую зависят от их номинальной мощности. Блок Uniel Upb-200W имеет небольшие размеры, но в подрозетник трудно засунуть.
Почему первый вариант установки предпочтительней?
Потому, что блок должен иметь не только свободный доступ для его замены или ремонта, но и иметь приток воздуха для естественного охлаждения элементов схемы (конвекция воздуха). Для этого на его корпусе имеются специальные прорези-отверстия.
Подключение блока защиты галогенных ламп и ламп накаливания
Схема подключения блока защиты не сложная. Его можно подключить двумя способами, в зависимости от напряжения используемых ламп.

Если лампы в люстре или светильнике на 220 В, то блок защиты подключается последовательно в цепь с лампой.
В принципе, полярность проводов не имеет значение, главное, чтобы блок подключался в разрыв фазного провода, т.е. последовательно с одноклавишным выключателем.

1. Схема подключения блока защиты, установленного в подрозетнике одноклавишного выключателя, для ламп 220 В

2. Схема подключения блока плавного пуска, установленного на потолке, для ламп 220 В

3. Подключение блока защиты ламп на 6, 12 и 24 В, установленного в подрозетнике выключателя
Если лампы на 6, 12, 24 (В) и подключены через понижающий трансформатор, то блок подключается со стороны 220 В

4. Подключение блока плавного пуска для ламп на 6, 12 и 24 В, установленного на потолке

Рассматриваемый блок Uniel Upb-200W работает, как с электронными, так и с электромагнитными понижающими трансформаторами.
Из чего состоит блок защиты ламп накаливания и галогенных ламп?
Снимем заднюю крышку блока и достаем печатную плату.

Внешний вид электрической схемы, размещенной на печатной плате.


Вдаваться в подробности схемы не будем. Если вкратце, то на ней расположены: симистор, микросхема для его управления (8 ножек), диоды, конденсаторы и прочие полупроводниковые элементы.
В более мощных блоках симистор расположен на радиаторе для более эффективного охлаждения.
В конце статьи ответим на распространенный вопрос: «Не сгорит ли блок, если на нагрузке (лампе) произойдет короткое замыкание?»
Симисторы выбраны с некоторым запасом по току, поэтому при коротком замыкании должен в первую очередь отключиться автоматический выключатель.
Но встречаются случаи, когда при коротком замыкании на лампе выходит из строя блок (чаще всего в нем сгорает симистор), поэтому в таком случае нужно будет менять блок в целом или производить его ремонт.
Плавное включение лампы своими руками
Плавное включение лампы накаливания своими руками.
В ходе непрекращающегося перегорания ламп накаливания, и в том числе на лестничн ой площадке было реализовано несколько схем защиты ламп накаливания в интернете.Их применение дало положительный результат – лампы приходится менять гораздо реже. Однако не все реализованные схемы устройств работали «как есть» — в процессе эксплуатации приходилось производить подбор оптимального набора элементов. Параллельно производился поиск других интересных схем. Как известно, плавное включение ламп накаливания увеличивает срок их службы и исключает броски тока и помехи в сети. В устройстве, которое реализует такой режим, удобно использовать мощные полевые переключательные транзисторы. Среди них можно выбрать высоковольтные, с рабочим напряжением на стоке не менее 300 В и сопротивлением канала не более 1 Ом.
Схема плавного включения — 1
![]()
Автор приводит две схемы плавного пуска ламп. Однако, здесь хочу предложить только схему с оптимальных режимом работы полевого транзистора, что позволяет его использовать без радиатора при мощности лампы до 250 Ватт. Но вы можете изучить и первую — которая проще тем, что включается в разрыв одного из проводов. Тут по окончании зарядки конденсатора напряжение на стоке составит примерно 4…4,5 В, а остальное напряжение сети будет падать на лампе. На транзисторе при этом будет выделяться мощность, пропорциональная току, потребляемому лампой накаливания. Поэтому при токе более 0,5 А (мощность лампы 100 Вт и больше) транзистор придется установить на радиатор. Для существенного уменьшения мощности, рассеиваемой на транзисторе, автомат необходимо собрать по схеме, приведенной далее.
Плавное включение своими руками-схема 2

Схема устройства, которое включается последовательно с лампой накаливания, приведена на рисунке. Полевой транзистор включен в диагональ диодного моста, поэтому на него поступает пульсирующее напряжение. В начальный момент транзистор закрыт и все напряжение падает на нем, поэтому лампа не горит. Через диод VD1 и резистор R1 начинается зарядка конденсатора С1. Напряжение на конденсаторе не превысит 9,1 В, потому что оно ограничено стабилитроном VD2. Когда напряжение на нем достигнет 9,1 В, транзистор начнет плавно открываться, ток будет возрастать, а напряжение на стоке уменьшаться. Это приведет к тому, что лампа начнет плавно зажигаться.

Но следует учесть, что лампа начнет зажигаться не сразу, а через некоторое время после замыкания контактов выключателя, пока напряжение на конденсаторе не достигнет указанного значения. Резистор R2 служит для разрядки конденсатора С1 после выключения лампы. Напряжение на стоке будет незначительным и при токе 1 А не превысит 0,85 В.
При сборке устройства были использованы диоды 1N4007 из отработавших свое энергосберегающих ламп. Стабилитрон может быть любой маломощный с напряжением стабилизации 7. 12 В.
Под рукой нашелся BZX55-C11. Конденсаторы — К50-35 или аналогичные импортные, резисторы — МЛТ, С2-33. Налаживание устройства сводится к подбору конденсатора для получения требуемого режима зажигания лампы. Я использовал конденсатор на 100 мкф – результатом стала пауза от момента включения до момента зажигания лампы в 2 секунды.
Немаловажным является отсутствие мерцания лампы, как это наблюдалось при реализации других схем. Для облегчения жизни другим заинтересованным самодельщикам выкладываю фото готового гаджета и печатную плату в Sprint-Layout 6.0 (перед нанесением на текстолит делать зеркальное отражение не нужно).
Это устройство работает уже долгое время и лампы накаливания пока менять не пришлось.
Автор статьи и фото — Николай Кондратьев (позывной на сайте Николай5739), г.Донецк. Украина.
Умное устройство защиты ламп накаливания при включении
Несмотря на повсеместно взятый курс на отказ от ламп накаливания, в продаже все еще можно найти таковые разной мощности. Кроме того, есть сегмент галогенных ламп, имеющих достаточно значительную стоимость, да и споры о «вредности» светодиодных источников света не утихают. Поэтому, актуальность устройств для увеличения срока службы ламп накаливания хоть и стала меньше, но не пропала совсем. Таких схем в Сети и печатных изданиях множество. Но они, как правило, не совершенны, в силу того, что в подобных устройствах просто затягивается во времени процесс включения, а ток прямо не контролируется, априори считая его сниженным до безопасного уровня. Это, в свою очередь, приводит либо к недостаточной защите, либо к чрезмерному увеличению времени включения.
В предлагаемом устройстве в процессе включения лампы прямо контролируется среднеквадратичное значение тока, не допуская повышения мощности на лампе сверх номинальной. При этом, устройство корректно работает с лампами, мощностью от 15 до 150 Вт, настраиваясь автоматически. Так же данное устройство позволяет, по желанию пользователя, производить более долгое, чем необходимо для ограничения тока, включение (визуально «плавное» включение).
Как это работает? Сначала немного теории. Как известно, ток через лампу в произвольный момент времени можно описать формулой
где Io – амплитудное значение, постоянное для данного напряжения сети и сопротивления нити накала.
Для вычисления среднеквадратичного за полуволну значения тока (далее будем называть его «действующий ток») через лампу, при открывании тиристора с задержкой по фазе φ, проинтегрируем квадрат правой части формулы от φ до π, поделим на общий интервал (π) и вычислим из полученного результата квадратный корень:
![]()
Здесь Ix – значение тока в момент открытия тиристора.
Нетрудно заметить, что действующий ток (или, соответственно, действующее напряжение на лампе) пропорционален мгновенному значению тока в момент открытия тиристора (для данной фазы открытия).

Исходя из вышеописанного, для каждого фиксированного угла включения вычислены коэффициенты и занесены в массив, с помощью которого для каждого значения легко вычисляется действующий ток через лампу. Конечно, здесь возникает некая ошибка из-за роста сопротивления лампы в течении одного импульса, но это не ухудшает параметры устройства, так как ток от этого эффекта может только уменьшиться. Фаза открытия тиристора изменяется в соответствии с измеренным током в момент открытия так, что ток лампы остается на уровне не более 130% от номинального в течении всего процесса включения. А так как напряжение при этом значительно ниже номинала, мощность никогда не превышает номинальную.
Технические характеристики:
- Напряжение питания (В) …………………..……………. 180 – 250
- Мощность лампы (Вт) ……………………….…………. 15 – 150
- Дополнительное увеличение времени включения (с) … 0 — 4
Схема устройства представлена ниже.
![]()
Напряжение 230В через предохранитель FU1 поступает на диодный мост на диодах D1-D4, а с него на остальную часть схемы в виде пульсирующего положительного напряжения. Лампа накаливания, подключаемая к разъему J2, включена через тиристор U1, который управляется портом GP0 микроконтроллера (МК) DD1. Сигнал с датчика тока (резистор R9) поступает на порт GP1, сконфигурированный как аналоговый вход АЦП. Сигнал с делителя R3R4R6 поступает на вход INT и в начале каждой полуволны запускает прерывание. Фронт этого сигнала совпадает с моментом, когда напряжение достигает 9-10 В, что дает задержку от начала полуволны примерно в 50 мкс, которая корректируется программно. Светодиод HL1 сигнализирует о перегрузке (мощность лампы более 200Вт), при этом лампа отключается от сети вплоть до отключения-включения устройства. Питается МК напряжением около 5В с параметрического стабилизатора R1R2C1D5. Диод D2 защищает управляющий переход тиристора от обратного напряжения, а значительный номинал R8 – вход МК при обрыве резистора R9 (возможно при КЗ в нагрузке). Номинал R8 выбран больше рекомендованного производителем МК, однако, это не сказывается на работе, так как , во-первых, снижение точности на доли процента здесь не критично и, во-вторых, практически все измерения в устройстве относительны.
Работа программы. МК тактируется от внутреннего генератора частотой 4МГц. Имеются два прерывания. В одном фиксируется начало новой полуволны сетевого напряжения, в другом (от таймера TMR0 интервалом 500мкс) – отсчет временных интервалов. Первоначально сигнал на включение тиристора длительностью 200мкс подается спустя 9мс от момента перехода сетевого напряжения через ноль, что соответствует 5% от номинального напряжения. Далее тиристор включается через 8.5мс, 8мс и т.д. После каждого открытия тиристора измеряется ток и вычисляется его эффективное значение. Причем, необходимое условие перехода к следующему значению – действующее значение тока, меньшее номинального. Дополнительно, в зависимости от режима, к каждой ступени добавляется задержка 0 – 400 мс, что дает максимальную дополнительную общую задержку в 4с. В режиме без дополнительной задержки зажигание лампы происходит в течении минимально необходимого для безопасного включения времени – обычно около 0.4 с. Для смены режима (доп. задержка 0, 1, 2, 3 или 4 сек.) достаточно выключить прибор через время менее 5 сек. после включения. При следующем включении режим будет изменен.
Запись в память номинального тока лампы происходит через 6 сек. после включения. При смене мощности лампы, первое включение будет некорректным. Необходимо подождать 10 сек. и выключить прибор. Последующие включения пройдут в штатном режиме.
Конструкция и детали. Устройство собрано на печатной плате размерами 90мм на 26мм из стеклотекстолита с односторонней металлизацией. Далее изображены конфигурация «дорожек» и расположение деталей, а так же фотоснимки готового устройства.
![]()
![]()
![]()
![]()
Напряжение питания и лампа подключены через винтовые колодки с шагом контактов 5мм. Для уменьшения вероятности КЗ, желательно использовать трехконтактные колодки с удалением среднего контакта и подключением проводов к крайним. Применение двухконтактных колодок требует особой осторожности при подключении. В этом случае, на плате между средним контактом и одним из крайних впаивают перемычку. Тиристор можно заменить на BT151-600 или BT151-800. Отечественные типа КУ202 не подойдут из-за больших токов включения и удержания. Диоды моста подойдут любые на ток не менее 1А и обратное напряжение не менее 400В. Так же удобно заменить их всех мостом типа 2W08G. Стабилитрон D5 – любой, маломощный на 5.1 В. Диод D6 – быстрый на напряжение не менее 400В, например, FR105-FR107. МК установлен на DIP колодку. Номинал конденсатора С1 не следует увеличивать по принципу «кашу маслом не испортишь» — может не стартовать МК из-за медленного нарастания напряжения. Никакого налаживания устройство не требует.
Программа МК написана на языке С и откомпилирована в среде MikroC. Программа работает с временными интервалами, поэтому, желательно перед программированием чипа предварительно сохранить значение калибровочной константы из последней ячейки памяти программ МК и вписать ее туда же после загрузки прошивки в программу-оболочку используемого программатора (в PicKit это делается автоматически). Если этого не сделать константа будет «откалибрована» средним значением. Впрочем, нарушить работу программы и устройства в целом это не должно.