Автоматические регуляторы температуры в системах отопления

Системы автоматического регулирования

Выбираете энергоэффективные решения?

Обратите внимание на геотермальные тепловые насосы FORUMHOUSE

Геотермальный тепловой насос EU (старт/стоп)

Геотермальный тепловой насос IQ (псевдоинвертор)

Геотермальный тепловой насос IQ (инвертор)

Даже в достаточно «теплых» регионах нашей страны отопительный сезон составляет не менее семи месяцев, а где и все девять, и залог комфортного проживания в квартире или доме — эффективная система отопления. И в это понятие входит не только надежность оборудования и его достаточная мощность, но и экономичность, а этот параметр в большой степени зависит от управления отоплением. Сравнительно недавно не было альтернативы ручному управлению и регулированию, сегодня же активно применяются системы автоматического регулирования, что гораздо удобнее и выгоднее. В этой части курса Академии FORUMHOUSE при помощи специалиста компании REHAU, рассмотрим:

  • Преимущества автоматического управления отопительными системами
  • Функционал и компоновка автоматических систем управления
  • Особенности систем управляющей автоматики

Преимущества автоматического управления отопительными системами

Современные отопительные системы преимущественно панельного, либо панельно-лучистого типа. Это радиаторы, комбинация теплого водяного пола с радиаторами или только теплый пол. Настроить и поддерживать желаемые параметры отопления можно вручную – с помощью встроенных насосно-смесительных узлов. Особенно, если напольный подогрев частичный. Ручная регулировка по собственным ощущениям температуры в помещениях и степени нагрева отопительных элементов обеспечивает нормальную работу системы. Но полностью раскрыть ее потенциал такой способ управления не способен. Необходимо учитывать и высокую тепловую инерционность теплого пола, из-за которой выход на заданный режим происходит медленнее, чем в радиаторных системах, что дополнительно снижает удобство ручной балансировки.

Тогда как автоматическая настройка и управление обладает рядом преимуществ.

Автоматические системы управления отоплением (охлаждением) обеспечивают точную настройку рабочих параметров с учетом потребностей владельцев и поддержание заданного режима в течение всего периода использования. Они позволяют полностью задействовать функционал оборудования, повысить уровень комфорта и значительно сократить затраты на отопление. По сравнению с ручной настройкой экономия составит до 20%.

Еще одним достоинством автоматики является защита напольных покрытий – система не допустит повышения температуры теплоносителя выше ограничения. Превышение рекомендованной температуры на поверхности пола может вызвать порчу напольного покрытия. Контролируя работу системы напольного обогрева можно не только создать комфортные условия, но и надолго сохранить отличное состояние отделочных материалов.

Функционал и компоновка автоматических систем управления

Автоматическая регулировка в контурах осуществляется посредством повышения или снижения интенсивности работы отопительного оборудования, что позволяет оптимизировать энергопотребление. Помимо повышения энергоэффективности подобные системы предоставляют повышенный комфорт для пользователей.

Базовая система компонуется всего несколькими элементами.

  • Комнатный терморегулятор – контроль и поддержание температуры.
  • Клеммная колодка – коммутация системы.
  • Сервопривод – управление регулирующими клапанами.

Подключение к терморегулятору выносного датчика температуры позволяет контролировать температуру пола или строительной конструкции. Также выносной датчик температуры может использоваться в качестве замены встроенного датчика температуры воздуха.

Внутри большинства терморегуляторов установлен датчик температуры. При отклонении от заданного значения температуры, терморегулятор формирует сигнал на исполнительный механизм (сервопривод). Исходя из пожеланий, пользователь может выбрать терморегулятор не только с базовыми функциями (управление обогревом), но и с расширенными: управление также и охлаждением, переключение режимов работы по таймеру. По желанию в разных помещениях могут быть установлены разные модификации терморегуляторов. При необходимости систему можно дополнительно упростить – соединить терморегуляторы с сервоприводами (до пяти) напрямую, без использования клеммной колодки.

Базовая система оптимальна для применения в квартирах или частных домах. Она эффективно контролирует отопление (охлаждение) и адаптирует режим под запросы домочадцев.

Если же речь идет не только об отоплении, но и о другом климатическом оборудовании (кондиционирование, вентиляция, осушение/увлажнение), для комплексного контроля выпускается специализированная система автоматики.

Элементы системы климатического контроля в помещении взаимодействуют по тому же принципу, что и в системе автоматического управления отоплением (охлаждением). С той разницей, что вычислительные процессы, позволяющие оптимизировать работу подключенного оборудования, происходят не в терморегуляторе, а в базовой станции. А компоновка системы помимо стандартного оборудования включает также модули расширения.

Для большинства частных домов и коттеджей достаточно системы с одной базовой станцией, которая рассчитана на управление температурно-влажностным режимом в восьми помещениях. Но при необходимости управления климатом в большем количестве комнат можно объединить до пяти базовых станций.

Особенности систем управляющей автоматики

Наряду с проводными системами управляющей автоматики, элементы которых соединяются кабелем, также существуют системы с беспроводными соединениями. Их установка не требует штрабления стен, что особенно актуально, если монтаж выполняется в доме с уже готовой чистовой отделкой. Независимо от вида систем, все оборудование характеризуется привлекательным дизайном, а интерфейс терморегуляторов интуитивно понятен.

Удаленный доступ осуществляется посредством подключения системы к сети «Интернет», с использованием браузеров или мобильного приложения, что значительно расширяет возможности пользователей. Контролировать температурный режим или климат в помещении в целом, можно из любой точки мира и в любое время. Мониторинг в режиме реального времени позволяет поддерживать оптимальные параметры инженерных систем в отсутствие владельцев и подготавливать дом к их возвращению.

Системы автоматического управления отоплением и охлаждением удобны, практичны и экономичны. Круглый год в доме будет поддерживаться оптимальный микроклимат, не требующий постоянной ручной регулировки. С управляющей автоматикой даже резкое похолодание в отсутствии хозяев не влечет последствий в виде выстывшего дома или повреждений систем отопления.

Как выбрать регулятор температуры воды в системе отопления

Электронные или механические регуляторы температуры воды в системе отопления позволяют существенно повысить комфорт проживания в частном доме, сокращая расходы домовладельца на обогрев помещения. Используемая автоматика отличается универсальностью, подходит для теплового оборудования различного типа, позволяет в автономном режиме корректировать работу котлов, поддерживая температуру в помещении.

  • 1. Основное назначение и принцип работы
  • 2. Виды терморегуляторов
  • 3. Жидкостные и газонаполненные термостаты
  • 4. Монтаж автоматических регуляторов
  • 5. Способы настройки механических клапанов

Температурный регулятор отопления представляет собой простейшее устройство, которое в зависимости от интенсивности нагрева воды в контуре или воздуха в помещении могут перекрывать ток жидкости в радиаторе отопления. Наличие таких механических и электрических клапанов позволяет автоматизировать работу отопительного оборудования.

С помощью регуляторов отопления поддерживают оптимальную температуру в различных комнатах. Например, в спальне можно установить термостат на уровне 16−18 градусов, на кухне — 20−22, в детской — 24−25, а в ванной комнате — 26−28 градусов. Автоматические регуляторы позволяют упростить отопление помещения, при этом имеется возможность тонкой настройки работы модуля управления, который будет отвечать за создание оптимального микроклимата в помещении.

Наличие терморегулятора позволяет решить следующие проблемы:

  1. 1. В помещении создается оптимальный температурный режим.
  2. 2. Уменьшается расход тепловой электроэнергии.
  3. 3. Имеется возможность аварийного отключения батареи без обесточивания всего стояка.
  4. 4. С одинаковым успехом такие регуляторы могут использоваться в квартирах в многоэтажках, так и в частных домах, где работают автономные отопительные установки.

Принцип работы регуляторов чрезвычайно прост. В механических устройствах внутри корпуса располагается термоактивная жидкость или газ. В зависимости от положения рычага термостата активное вещество в регуляторе будет перекрывать поток теплоносителя, изменяя тем самым интенсивность нагрева радиатора.

В автоматических устройствах встроены различные механические датчики, которые следят за температурой и при необходимости изменяют положение задвижки в трубе, уменьшая или увеличивая количество попадающего в радиатор теплоносителя. Электрорегулятор температуры отопления способен управлять не только батареями, но и контролирует смесители, насосы, котлы.

В автономных системах используются различные типы терморегуляторов, которые отличаются своей конструкцией и принципом работы. Распространение получили три вида устройств:

  • механические;
  • электронные;
  • полуавтоматические.

Простейшие механические терморегуляторы отличаются надежной конструкцией, позволяя выполнять ручную настройку количества подаваемого внутрь батареи теплоносителя. К преимуществам этого типа приборов можно отнести их простоту, доступную стоимость, четкость и легкость настройки. Они полностью энергонезависимы, поэтому для работы таких устройств не требуется дополнительное подключение к электричеству или использование различных небольших батареек. К недостаткам механических терморегуляторов принято относить отсутствие разметки, поэтому настройку агрегата выполняют исключительно опытным путем.

Электронные термостаты отличаются сложной конструкцией, включают программируемый микропроцессор, который анализирует данные от многочисленных датчиков, посылая сигналы исполнительным устройствам на открытие или закрытие радиаторов, что позволяет оперативно изменять температуру в помещении.

Электронные терморегуляторы в системах отопления принято разделять на два типа:

  1. 1. Закрытые модели не способны автоматически определять температуру, поэтому требуется их ручная настройка. После завершения регулировки устройство будет в автономном режиме поддерживать микроклимат в помещении.
  2. 2. Открытые автоматические регуляторы температуры в системах отопления отличаются расширенной логикой. Имеется возможность тонкой настройки термостата, в том числе установка таймера, порога срабатывания устройства на минимальную и максимальную температуру.

Полуавтоматические модели сочетают преимущества электронных и механических терморегуляторов. Они имеют доступную стоимость, поэтому идеально подходят для применения в бытовых целях. Наличие у полуэлектрического регулятора небольшого цифрового дисплея позволяет существенно упростить их настройку и последующее использование.

В качестве термостатического элемента у регулятора может использоваться вещество в жидком или газообразном состоянии. Соответственно, все устройства принято делить на жидкостные и газонаполненные. Каждый из таких типов регуляторов имеет свои преимущества и недостатки.

Газонаполненные регуляторы отличаются длительным сроком службы, при этом они обеспечивают максимально возможную точность работы. Благодаря использованию газообразного термостатического элемента достигается четкая и плавная регулировка температуры нагрева радиаторов. У электромеханических приборов в комплекте поставки имеются датчики, определяющие температуру воздуха в помещении, что обеспечивает максимальную точность управления системой отопления.

Из преимуществ жидкостных моделей отмечают их высокую точность при передаче давления на внутренние подвижные механизмы. Такие регуляторы обеспечивают максимально точную работу радиаторов отопления в соответствии с заданной предварительно программой. В зависимости от своей модификации жидкостные регуляторы могут иметь дистанционные и встроенные датчики. Приборы, оснащенные внутренним блоком для измерения температуры, устанавливают строго горизонтально.

Регуляторы с дистанционными датчиками могут использоваться в следующих случаях:

  • радиаторы установлены в нише;
  • термостат расположен в вертикальном положении;
  • батарея закрыта плотными воздухонепроницаемыми шторами.

Во всех случаях встроенный в прибор внутренний датчик работает некорректно, поэтому для правильного определения температуры воздуха в помещении используются выносные термометры. В последующем передача данных осуществляется по небольшому кабелю или беспроводной связи.

Установка термостата не представляет особой сложности, поэтому всю работу можно выполнить самостоятельно, не обращаясь к профессиональным сантехникам. В то же время необходимо в обязательном порядке изучить инструкцию к конкретной модели регулятора, где будут подробно расписаны действия при установке устройства.

При монтаже автоматического регулятора отопления необходимо слить из батареи всю воду, для чего потребуется запирающий шаровой кран. После слива воды с батареи откручивают клапан, предварительно перекрыв все краны.

На радиаторе меняют адаптер. Для его снятия потребуется два разводных ключа, которыми фиксируют и откручивают гайки на подающей трубе и батарее. После замены адаптера аналогичную процедуру следует выполнить с воротником на радиаторе.

Непосредственно к установленному новому воротнику крепят терморегулятор. На корпусе термостата имеются соответствующие стрелки, позволяющие правильно смонтировать прибор, клапан которого фиксируется разводным ключом, после чего затягивают герметично гайку с дополнительной гидроизоляцией паклей и аналогичными материалами.

Всё что останется сделать, это открыть вентиль, полностью заполнить батарею водой, убедиться в отсутствии протечек, после чего можно приступать к настройке регулятора.

Если с настройкой полностью автоматических устройств не возникает каких-либо сложностей, то правильно отрегулировать работу механических клапанов бывает затруднительно. Необходимо измерять не только температуру теплоносителя, но и воздуха в помещении. В комнате закрывают все двери и окна, что позволяет свести теплопотери к минимуму.

Измеряют температуру воздуха в помещении, записывают полученные данные, после чего до упора отворачивают клапан термостата. Теплоноситель заполнит батарею полностью, а показатель теплоотдачи у прибора будет максимальным. Через час выполняют повторное измерение температуры и сравнивают ее с предварительными данными.

Головку регулятора до упора поворачивают в обратную сторону. Как только температура воздуха в комнате достигнет оптимальных значений, клапан вновь открывают до тех пор, пока из батареи не будет слышен шум текущей воды, а сам радиатор не начнет быстро нагреваться. В этот момент вращение регулятора прекращают, фиксируя зажимом его положение.

Алгоритм действий при установке терморегуляторов может существенно различаться, поэтому перед началом монтажа прибора следует ознакомиться с инструкцией.

В конструкции регуляторов отопления имеются хрупкие детали, которые можно повредить при неосторожном обращении, поэтому во время монтажа следует соблюдать внимательность, действуя предельно аккуратно, не пережимая газовыми ключами и другими фиксаторами пластиковые элементы термостата.

Устанавливать клапан необходимо таким образом, чтобы после фиксации термостат имел горизонтальное положение. В противном случае в регулятор будет поступать теплый воздух от батареи, что может отрицательно сказаться на точности его работы.

При установке термостата на однотрубные радиаторы возможен дополнительный монтаж байпаса в патрубок, что позволяет существенно упростить последующую эксплуатацию системы отопления.

На корпусе регулятора будут указаны стрелки, показывающие направление воды на входе в радиатор отопления. При установке теплоклапанов следует учитывать направление движения теплоносителя.

При использовании электрических термостатов выносные датчики должны располагаться на удалении от клапанов 2−8 см. Это позволит обеспечить необходимую точность измерений, оптимизируя работу всей системы отопления в доме.

Использование регуляторов температуры в системах отопления позволяет повысить эффективность обогрева помещения, создает оптимальные условия в каждой из комнат, сокращает расходы домовладельца на оплату коммунальных услуг. В настоящее время в продаже можно найти механические, полуавтоматические и автоматические термостаты, отличающиеся своим принципом работы. Наибольшее распространение получили полуавтоматы, которые сочетают функциональность и удобство использования. Все монтажные работы можно провести самостоятельно, что позволит сэкономить на услугах профессиональных сантехников.

Терморегулятор для радиатора отопления – принцип работы, технические характеристики, типы, как выбрать и установить

В отопительный сезон зачастую батареи в квартирах греют так, что приходится постоянно открывать форточки. При этом жильцам становится более комфортно, но по сути они отапливают улицу за свой счет. Терморегулятор для радиатора отопления поможет улучшить температурный режим в помещении, а также снизить расходы на обогрев, если счета за отопление выставляются по приборам учета.

В рамках государственной программы “Энергосбережение” установка регулирующей трубопроводной арматуры является неотъемлемой частью индивидуального и массового строительства. Терморегуляторы могут использоваться как в одно-, так и в двухтрубных системах отопления в домах любой этажности, возраста и назначения.

Единственное ограничение — чугунные батареи. Они обладают тепловой инерцией — долго разогреваются и остывают. Поэтому терморегулятор не может работать так же эффективно, как на биметаллических или стальных отопительных приборах.

Предназначение терморегулятора для радиатора отопления

В частных домах с индивидуальной котельной можно увеличить или уменьшить температуру теплоносителя по своему усмотрению. В квартирах с центральным отоплением данное действие к сожалению невозможно. В системе циркулирует нагретый теплоноситель, температура которого практически не зависит от желания жильцов. Это нормативная величина, ее обеспечивают ТЭЦ и бойлерные, обслуживающие несколько домов или кварталов.

Какие радиаторы отопления лучше ставить в квартире – на какие аспекты обращаем внимание во время выбора, ТОП – 17 батарей.

Тепловое оборудование не может чутко реагировать на температурные колебания на улице, поэтому при оттепелях или раннем приходе весны возможен перегрев помещений. Это неблагоприятно отражается на самочувствии жильцов, а также приводит к перерасходу недешевых энергоносителей.

Но сделать температуру воздуха в комнате комфортной и поддерживать ее в стабильном состоянии, несмотря на изменения погоды, вполне реально.

Для этого на радиаторы устанавливаются терморегуляторы, с помощью которых можно задать необходимую теплоотдачу каждого отопительного прибора или целых групп батарей.

По нормативам СанПиН 2.1.2.2645-10 комфортными считаются температуры:

  • в жилых комнатах — 20-22°С;
  • на кухне — 19-21°С;
  • в ванной и совмещенном санузле — 22-24°С.

Установка необходимого уровня обогрева с помощью терморегулятора — наиболее простой способ поддерживать заданный температурный режим в каждом помещении. А благодаря автономной настройке сделать это можно не вмешиваясь в работу всей отопительной системы.

Принцип работы

Терморегулятор для радиатора отопления — трубопроводная арматура, которая может изменять количество проходящего через просвет трубы теплоносителя, обеспечивая нужную тепловую мощность. При этом увеличить теплоотдачу он не способен, только уменьшить. Если батареи греют плохо, то смысл производить установку терморегулятора нет.

Температурные регуляторы устанавливаются, как правило, на подачу. Режим выставляется в зависимости от желаемой температуры воздуха. Регулировка производится механическим поворотом ручки с градуированной шкалой или при помощи программного блока.

При нагревании терморегулятора выше заданного регистра происходит срабатывание чувствительного температурного клапана. Подача теплоносителя снижается, и радиатор остывает. При обратном процессе, когда температура упала ниже установленной нормы, клапан открывается. Теплоноситель начинает поступать в батарею более интенсивно, воздух в помещении нагревается. Таким образом, постоянные комфортные условия поддерживается практически без участия человека.

Технические характеристики

Для терморегуляторов, не использующих электроэнергию, разработан нормативный документ — ГОСТ 30815-2002. Он устанавливает предельные характеристики с учетом номинальных параметров сетей отопления, принятых на территории нашей страны:

  • максимальная температура теплоносителя — 120°С;
  • избыточное давление — 1,0 МПа;
  • температура воздуха в помещении — 5-45°С;
  • влажность — 30-80%;
  • время срабатывания — не более 40 мин.

Направление потока теплоносителя в термостате радиатора отопления обозначается на корпусе. Обратная установка не допускается.

Термостат – это прибор, позволяющий поддерживать температуру в заданных параметрах за счет использования терморегулятора. Устройство применяется в холодильниках, отопительных приборах и пр.

Терморегулятор должен отвечать требованиям надежности:

  • при опрессовке выдерживать давление не менее 1,5 МПа без утечек;
  • допускать замену штока без спуска теплоносителя из системы;
  • терморегулятор должен не трескаться и не раскалываться при изгибающих нагрузках на корпус.

Рукоятка должна быть прочной, уплотнение штока герметичным. Чтобы регулировка производилась без больших усилий, при вращении ручки крутящий момент не должен превышать 2,0 Нм.

В технической документации на свою продукцию изготовитель обязан указать:

  1. Диапазон настройки;
  2. Минимальное давление теплоносителя в системе;
  3. Минимальный перепад давления на клапане;
  4. Номинальный поток;
  5. Гидравлические характеристики клапана;
  6. Функции защитного колпачка.

В случае, когда терморегулятор предусматривает предварительную настройку, должна указываться индикация и соответствующая ей величина потока.

Материалы для изготовления терморегуляторов

Поверхности, которые соприкасаются с нагретым теплоносителем, испытывают большие разрушающие нагрузки. Они изготавливаются из устойчивых к коррозии сплавов — бронзы или латуни.

Уплотнительные элементы терморегуляторов производятся из фторопластов, выдерживающих нагрев без деформаций. Рукоятки — из полиамида, полипропилена, полистирола. Внутри должны предусматриваться стальные закладные детали для прочного соединения со шпинделем. ГОСТ разрешает применение и других материалов, характеристики которых отвечают необходимым требованиям по надежности и долговечности.

Конструкция терморегулятора для батареи отопления

Терморегулятор на батарею представляет собой двухходовой регулирующий клапан. Его преимущество перед обычным шаровым краном — возможность не только перекрывать движение теплоносителя по трубе, но и плавно изменять его интенсивность. В конструкции предусмотрено 2 части:

  • съемная термостатическая головка;
  • термоклапан, который устанавливается непосредственно в просвет трубы.

Термостатическая головка — это герметичный цилиндр с пластиковой рукояткой и встроенным сильфоном — упругой оболочкой, наполненной рабочим веществом. Таким веществом может выступать жидкость или газ с высоким температурным расширением — ацетон, толуол, газоконденсат. Они чрезвычайно чувствительны к нагреву, реагируя резким увеличением объема.

Термоголовки производятся съемными. Поэтому их можно устанавливать вместе с различными клапанами, которые подходят для конкретной отопительной системы. В качестве теплоносителя должны использоваться незамерзающие жидкости или специально очищенная вода, поскольку устройства чрезвычайно чувствительны к загрязнению.

Типы регуляторов температуры

Согласно ГОСТ 30815-2002 терморегуляторы классифицируются на 4 группы:

  • встроенный датчик и регулятор температуры;
  • встроенный только регулятор, а датчик дистанционный;
  • дистанционный и регулятор, и датчик;
  • регулятор расположен отдельно, датчик дистанционный.

Преимущества встроенных датчиков — компактность, простая установка. Недостаток — влияние на эффективность работы окружающих предметов. Если датчик на трубе отопления стоит вертикально, или рядом висит плотная штора, чувствительный элемент быстро разогревается, и клапан срабатывает раньше времени.

Также датчик может некорректно функционировать, если вместе с радиатором он расположен в нише или вблизи подоконника. Как правильно подключить терморегулятор со встроенным датчиком всегда указывается в инструкции производятеля, которой нужно строго придерживаться.

Дистанционные датчики не испытывают непосредственного воздействия радиатора, что приводит к более точному поддержанию установленного режима. Закрепить радиаторный термодатчик можно на расстояние до 8-10 м для измерения градусов в любой точке помещения. Соединяется он с термоклапаном капиллярной трубкой, которая передает подвижному штоку давление от чувствительного элемента датчика.

Термоклапан: устройство, виды, способы установки

Термоклапан — это исполнительный механизм, работа которого осуществляется от воздействия с термостатической головки. По конструкции он бывает угловой, проходной и трехосевой правый или левый. Для изготовления используется латунь или бронза. Для дополнительной защиты от коррозии применяется хромирование или никелирование. Снаружи запорный вентиль может быть покрыт эмалью, что придает ему более эстетичный и благородный вид.

Для однотрубных и двухтрубных систем выпускаются разные клапана. Они различаются гидравлическими характеристиками, поскольку для одноконтурных трубопроводов требуется арматура повышенного проходного сечения.

Для однотрубного отопления, которое постепенно заменяются более экономичным и комфортным двухтрубным, ассортимент термоклапанов совсем небольшой, всего около 2-3 моделей. Основной объем продаж — 97-99% — это арматура для двухтрубных систем отопления.

Термоголовка: виды, способы регулировки, преимущества и недостатки

Главная функция термоголовки — считывать информацию о температуре окружающей среды и регулировать работу термоклапана. За первую часть задачи отвечает термодатчик, вторая решается разными способами.

Помощь в выборе

Отопительный прибор (например, радиатор) системы водяного отопления должен подавать в помещение тепло в строгом соответствии с текущей потребностью. Зимой требуемый уровень тепла выше, весной – ниже, поэтому температура теплоносителя в системе отопления должна меняться.

Регулирование температуры должна осуществлять автоматика индивидуального генератора тепла (котла), который является источником тепловой энергии в доме.

Однако не все котлы оснащаются подобными устройствами: часто автоматика лишь поддерживает температуру воды на постоянном уровне, либо отсутствует вовсе. В результате в помещениях становится то жарко, то холодно. Даже если регулирование на котле все-таки есть, нередко бывает сложно добиться баланса: теневая сторона дома холоднее, солнечная – теплее, поэтому приходится открывать форточки и выпускать уже оплаченное потребителем тепло наружу. Как лучше поступить в данной ситуации?

На радиаторах можно установить вентили или шаровые краны. С их помощью легко уменьшается подача горячей воды в приборы отопления. Сложно представить, чтобы у радиатора постоянно будет дежурить человек и закрывать кран, когда выйдет солнце, затопят камин или придут гости, а потом вновь открывать его, когда станет холоднее.

Такую работу берет на себя автоматический радиаторный терморегулятор. Устройство не только помогает поддерживать постоянную комфортную температуру в помещении без участия человека, но и экономит тепло и деньги на его оплату: счета становятся на 20% ниже. Для отопления используется «бесплатное» солнечное тепло, теплопоступления от людей, электроприборов и т.д. Кроме того, воздух вокруг вашего дома станет чище за счет сокращения выбросов дымовых газов от сжигания лишнего топлива.

Строительные нормы не случайно предписывают установку регулирующих устройств перед отопительными приборами, а в жилых зданиях – именно автоматических радиаторных терморегуляторов.

Устройство и принцип работы радиаторного терморегулятора

Радиаторный терморегулятор состоит из двух основных частей: термостатической головки (термоголовки) и регулирующего клапана.

Регулирующий клапан устанавливается на входе теплоносителя в радиатор. Под воздействием термоголовки он изменяет количество горячей воды, проходящей через прибор.

Термоголовка – главный элемент автоматического регулирования. С помощью соединительной гайки она закрепляется на регулирующем клапане и, реагируя на отклонения температуры воздуха в помещении от заданного значения, перемещает затвор регулирующего клапана.

Внутри термоголовки находится гофрированная, заполненная термочувствительной жидкостью емкость (сильфон), иногда в сочетании с ее парами. Через настроечную пружину сильфон связан с нажимным штоком, а тот в свою очередь – со штоком и затвором регулирующего клапана.

Когда температура воздуха в помещении становится выше заданного значения, жидкость в сильфоне расширяется, он сжимается и перемещает шток и затвор клапана в сторону уменьшения протока воды. Радиатор остывает, температура в помещении снижается. При падении температуры на улице происходит обратный процесс: жидкость уменьшается в объеме, сильфон растягивается, высвобождая шток клапана, который под воздействием возвратной пружины поднимается. Проток воды через радиатор увеличивается и, вслед за этим, температура в помещении восстанавливается.

Изменяя силу сжатия настроечной пружины простым поворотом рукоятки термоголовки, можно установить любую желаемую температуру. Терморегулятор будет поддерживать ее без вашего участия. Для этого на корпусе термоголовки нанесена шкала, цифры которой соответствуют температуре настройки.

Как видно, диапазон настройки температуры широк и, в зависимости от типа термоголовки, составляет от 2 до 29 о С. Однако следует помнить, что если радиатор изначально рассчитан на поддержание 22 о С, то терморегулятор в любом случае не сможет обеспечить более высокую температуру. Для этого радиатор должен иметь определенный запас.

При необходимости диапазон настройки может быть ограничен с обеих сторон – для этого в комплекте поставляются специальные штифты.

Термоголовки бывают трех разновидностей: со встроенным температурным датчиком, с выносным датчиком и головка дистанционного управления.

  • Первый тип применяется, когда радиатор располагается открыто под окном, и воздух помещения свободно омывает термочувствительный элемент термоголовки.
  • Если радиатор завешен глухими шторами или заставлен мебелью, температура вокруг обычной термоголовки будет выше, чем в помещении – регулятор может работать некорректно. В этом случае используется термоголовка с выносным датчиком, который должен располагаться на свободной стене примерно на высоте 1,5 м от пола, а сама головка – на клапане терморегулятора.
  • Термоголовка дистанционного управления представляет собой обычную головку, размещаемую на стене по тому же принципу, что и выносной датчик. Она связана с клапаном терморегулятора через капиллярную трубку гидропривода. Такая термоголовка применяется для удаленного управления температурой в помещении, когда доступа к радиатору и клапану терморегулятора нет вовсе.

Регулирующий клапан – исполнительное устройство терморегулятора, которое устанавливается на входе теплоносителя в радиатор и изменяет количество горячей воды, проходящей через отопительный прибор.

Клапан терморегулятора нормально открытый нажимного действия (закрывается под воздействием термоголовки, открывается за счет возвратной пружины).

Правильный выбор радиатора и терморегулятора поможет поддерживать в вашем доме комфортную температуру и сделает жизнь удобней и проще.

Термостаты и терморегуляторы

Выберете интересующий вас тип:
  • Терморегуляторы для теплого пола
  • Электронные термостаты
  • Термостаты для котлов
  • Накладные термостаты
  • Беспроводные термостаты
  • WiFi терморегуляторы
  • Проводные комнатные термостаты
  • Терморегуляторы на батарею
  • Терморегуляторы в розетку
  • Механические термостаты
  • Регуляторы насосов
  • Терморегуляторы с выносным датчиком
  • Погружные термостаты
  • GSM термостаты
  • Цифровые термостаты
  • Сенсорные терморегуляторы
  • Встраиваемые термостаты
Воспользуйтесь фильтрами, что бы сделать ваш поиск более точным и быстрым:

Термостат и терморегулятор, регулятор температуры и теплорегулятор – это названия одного и того же устройства, задачей которого является удержание постоянной температуры, заданной пользователем. Терморегулятор для отопления имеет ключевую роль, ведь именно он обеспечивает возможность автономной работы отопительной системы. Также такие устройства часто используются в составе вентиляционных систем, в кондиционировании, в автомобильных двигателях и так далее.

Виды терморегуляторов для отопления.

Многообразие регуляторов температуры отопления и охлаждения не имеет границ. В нашем интернет-магазине Teploregulyator.ru Вы увидите большое разнообразие этих приборов регулирования.

Но принципиальное отличие у этих приборов регулирования все-таки существует. По принципу работы друг от друга их можно разделить на 2 вида – механические и электронные.

Среди первых распространение получили капиллярные и биметаллические термостаты. В первом случае управление температурой осуществляется за счет расширения жидкости при росте и сужении при падении температуры. Во втором случае вместо жидкости используется биметаллический диск.

Электронные термостаты для отопления классифицируются на электромеханические и полностью электрические. В первых используется все тот же принцип работы, что и в механических биметаллических терморегуляторах для радиаторов отопления или для других устройств. Однако они характеризуются повышенной точностью регулировки, и их не требуется сбрасывать вручную. Электронные приборы оценивают изменение внешней температуры при помощи датчиков.

Механические устройства.

Такие регуляторы температуры отопительных систем появились первыми, весьма активно используются по сей день. Управление осуществляется при помощи вращающегося колесика на фронтальной панели устройства. Во время вращения пользователь задает температуру, при которой происходит срабатывание прибора. Его плюсы:

  • высокая надежность – только механические детали;
  • устойчивость к резким перепадам напряжения тока;
  • работоспособность при очень низких температурах;
  • простое управление, с которым не надо разбираться;
  • продолжительный срок эксплуатации – до 30-40 лет.

К минусам механических комнатных термостатов относится низкая точность регулировки температуры и ограниченный функционал. Однако низкая цена, простота применения и надежность нивелируют эти недостатки.

Электромеханические приборы.

К этой категории относятся более точные и функциональные устройства по сравнению с сугубо механическими. Это обусловлено применением более совершенного способа отслеживания внешней температуры. Два подхода:

  • Биметаллическая пластина. При нагревании до определенной температуры пластина из двух металлов гибко деформируется настолько сильно, что размыкает контакты питания отопительного прибора. Когда температура падает до установленного пользователем значения, пластина вновь замыкает эти контакты.
  • Капиллярная трубка с газом. Приборы, основанные на расширении газа, часто устанавливаются в котлы, бойлеры, масляные обогреватели и прочие нагревательные устройства. Трубка с газом помещена в воду, которая разогревается под действием внешнего тепла. При заданном значении газ размыкает контакты.

Электромеханические термостаты для газовых котлов, для отопления и иных устройств хороши тем, что у них есть функция автоматического подключения подогрева при падении температуры ниже установленной. Также они отличаются высокой герметичностью, приемлемой точностью, небольшой ценой. Но электронные устройства все равно более точные.

Электронные термостаты для отопления.

Электронные комнатные термостаты стремительно набирают популярность за счет высокой точности, большой функциональности и безопасной эксплуатации. Конструкция таких терморегуляторов для отопления включает контроллер для управления контактами, электронный ключ и выносной термодатчик. Внешний датчик следит за температурой, отсылает сигналы контроллеру, он дает команды контактной группе в зависимости от настроек.

  • С закрытой логикой. Имеют только встроенные заводские режимы без возможности их редактирования.
  • С открытой логикой. Дают пользователю возможность создавать свои режимы и алгоритмы управления.

Электронные регуляторы температуры отопления помимо функциональности и точности имеют массу других не менее важных достоинств. Это эффективность, стильный внешний вид, большой диапазон регулировок. Минус – более высокая цена по сравнению с механическими и электромеханическими приборами. Но это оправдано.

Купить комнатный термостат для отопления.

Рекомендуем вам купить терморегулятор для отопления или купить термостат для газового котла, чтобы наладить домашнюю автоматизацию в рамках управления отопительной системой. Это подарит комфорт, обеспечит безопасность эксплуатации обогревателей, уменьшит расходы энергии на работу нагревательных устройств. Установка регулятора обязательно окупится. Лучший выбор – надежные электронные термостаты. В продаже представлен большой ассортимент таких приборов. Цена на регулятор температуры отопления разнообразна. В нашем интернет-магазине Teploregulyator . ru имеется большой выбор приборов для управления климатом от различных мировых производителей. Мы доставляем продукцию по всей России и странам ближнего зарубежья.

Купить регулятор включения насоса очень просто! Позвоните нам по телефону +7 (495) 665-29-20 получите консультацию в выборе продукции, а также помощь в оформлении заказа.

Влияние автоматических регуляторов на гидравлический режим систем водяного отопления

В статье исследуется влияние регулирующей арматуры в совокупности с циркуляционным насосом на распределение теплоносителя в системе отопления с помощью компьютерного моделирования. Дана оценка воздействию балансировочных клапанов и терморегуляторов на гидравлику системы отопления в целом и ее отдельных участков с учетом их конструктивных особенностей.

Современный рынок оборудования для систем отопления наполнен широким ассортиментом арматуры. В отечественной практике стали чаще использоваться балансировочные клапаны, терморегуляторы, узлы регулирования, регуляторы перепада давления и расхода различных конструкций. Встает вопрос о том, какую регулирующую арматуру необходимо устанавливать в системах отопления, в каком количестве и на каких участках.

Важным элементом, предназначенным для регулирования системы, а значит, и для достижения максимально комфортных условий для пребывания людей в помещении, является терморегулятор. Он позволяет не только обеспечить необходимое количество теплоты, отдаваемое отопительным прибором, но и воздействовать на всю систему отопления в целом, непроизвольно изменяя гидравлический режим ее работы.

Конечной целью расчета системы отопления и подбора оборудования для нее является обеспечение необходимого значения теплового потока от каждого отопительного прибора для компенсации теплопотерь помещений здания в целом и достижения комфортных условий для пребывания людей в здании на протяжении всего отопительного сезона. Для соблюдения этих условий применяются два метода. Первый заключается в максимально возможном увязывании колец системы диаметрами отдельных трубных участков системы и установки наименьшего количества регулирующей арматуры. Второй метод пришел в отечественную практику вместе с новыми видами арматуры из Западной Европы. Он заключается в установке наибольшего количества арматуры на стояках, в тепловых пунктах и на ответвлениях для увязки циркуляционных колец непосредственно самой арматурой.

Оба метода имеют свои преимущества и недостатки.

Для подбора терморегуляторов, регуляторов расхода и балансировочных клапанов в современной практике используется характеристика, называемая пропускной способностью. Ее определяют как объемный расход воды в м 3 /ч с плотностью 1000 кг/м 3 , проходящей через клапан при перепаде давления 10 5 Па (1 бар). Размерность его (м 3 /ч)/бар 0,5 или, пренебрегая физическим смыслом, в каталогах часто пишут просто – м 3 /ч.

За счет изменения kv на клапанах происходит изменение двух параметров: расхода теплоносителя через клапан G и перепада давления на клапане ∆P. Это влияет не только на гидравлику отдельных участков, но и на систему отопления в целом. Это важный фактор, который должен учитываться проектировщиками.

Клапан отопительного прибора способен автоматически изменять свою пропускную способность в зависимости от температуры воздуха в помещении за счет термостатической головки, датчиков внутреннего воздуха или же за счет ручного регулирования потребителем.

Важно также заметить, что необходим тщательный подбор термоклапанов у отопительных приборов, потому что зависимость их теплоотдачи от расхода теплоносителя нелинейная. Также и у клапанов. Они бывают различного конструктивного исполнения, и зависимость хода штока от пропускной способности имеет свои особенности. Сопоставляя эти две характеристики, мы получим общую характеристику регулируемого участка [1].

Однако изменения характеристик регулируемого участка может привести к разрегулировке всей системы. Под разрегулировкой будем понимать несоответствие расходов теплоносителя в отопительных приборах относительно расчетных или необходимых, вследствие чего произойдет недостаток или избыток теплоподачи в помещения.

В системе отопления факторами разрегулировки являются:

  • отключение ветвей, стояков, отопительных приборов и других элементов системы в связи с аварией или за ненадобностью;
  • изменение расчетного расхода теплоносителя в отопительном приборе с целью поддержания необходимой температуры или минимальной температуры помещения из-за временного его неиспользования;
  • изменения схемы или элементов системы отопления после реконструкции и ремонта.

Циркуляционный насос системы отопления тоже имеет различные изменяющиеся характеристики, которые должны учитываться при регулировке системы. В данном исследовании был применен стандартный (современный бесфундаментный) насос. Ошибочно убеждение современных проектировщиков в том, что для качественной и «беспроигрышной» увязки гидравлических колец необходимо подбирать циркуляционный насос с большим запасом по располагаемому давлению. Это приводит к неоправданно завышенным стоимости системы и расходу электроэнергии.

Современные конструкции насосов позволяют более экономно расходовать электроэнергию и более точно поддерживать заданное располагаемое давление и расход в системе (насосы с электрическим управлением). При увеличенных капитальных затратах на эти насосы можно выиграть в пониженных эксплуатационных затратах на электроэнергию.

Однако, ориентируясь на новые технологии, в ходе конструирования системы отопления необходимо комплексно подходить к возможным гидравлическим и, соответственно, тепловым разрегулировкам при эксплуатации системы.

На примере конкретных схем систем отопления рассмотрим достоинства и недостатки двух методов конструирования системы отопления, о которых говорилось ранее. Анализ схем проводился с помощью компьютерного моделирования.

Система отопления без применения балансировочного клапана

На рис. 1 приведена схема без применения балансировочного клапана.

Схемы системы отопления без применения балансировочных клапанов

1 – оборудование теплового пункта; 2 – циркуляционный насос; 3 – отопительный прибор;
4 – отключающий шаровой кран; 5 – термоклапан

Для начала был выполнен стандартный гидравлический расчет по методу удельных линейных потерь давления для подбора диаметров. Клапаны были подобраны по каталогам фирмы-производителя, после чего была задана их установочная характеристика (пропускная способность, перепад давления и положение установки). Затем методом гидравлического расчета по характеристикам сопротивления определены коэффициенты затекания в каждый стояк и в каждый прибор.

В первом случае из регулирующей арматуры имеются только клапаны у отопительных приборов. Для анализа системы отключим один прибор на верхнем этаже первого стояка. Характеристика сопротивления увеличится и на графике (рис. 2) примет положение S1, а необходимый расход теплоносителя понизится на величину расчетного расхода в отключенном приборе (до 288,3 кг/ч). В самом начале отопительные приборы начнут получать больше теплоты, что приведет к перегреву помещений. Термостатические головки, электроника или же потребители вручную, реагируя на это, начнут воздействовать на клапан, который будет опускать шток клапана, уменьшая тем самым свою пропускную способность и увеличивая сопротивление всей системы. Каждый клапан будет опускать шток ровно на столько, на сколько расход теплоносителя должен измениться в отопительном прибое. В конце концов, установится стационарный режим, когда температура в помещениях стабилизируется, и штоки клапанов перестанут двигаться.

Характеристика насоса и системы отопления без использования балансировочных клапанов
S, ΔP, G – характеристика сопротивления, потери давления и расход теплоносителя в системе отопления соответственно; значения индексов этих параметров: «расч» – в исходном (расчетном) режиме; «1» – при отключении верхнего прибора первого стояка; «2» – при отключении первого стояка

Чтобы описать физику процесса, использовано понятие коэффициента затекания [2]. Для начала он был определен для всех стояков системы, чтобы получить требуемую характеристику сопротивления на каждом участке стояков, тем самым, определив, какую пропускную способность будет иметь клапан у отопительных приборов в данном конкретном состоянии системы.

Важно заметить, что клапан имеет определенные рамки изменения величины пропускной способности. Для данного случая он был ограничен пределами 0,04…0,54 (м 3 /ч)/бар 0,5 . Верхний предел является величиной при полном (максимальном) открытии клапана. Так же нормируется перепад давления на клапане. На клапане он не должен превышать 0,5 бар или примерно 5000 Па. В случае превышения максимального перепада давлений возможно некорректное регулирование температуры.

В процессе расчета системы и определения величин затекания участков было выявлено, что при расчетном режиме работы системы пропускная способность колеблется в пределах от 0,23 до 0,44 (м 3 /ч)/бар 0,5 , а перепад давления – от 1020 до 2497 Па. Данные значения полностью удовлетворяют требованиям, принятым ранее.

Если отключается первый прибор первого стояка, то после автоматического регулирования и установившегося стационарного теплового режима в помещениях пропускные способности клапанов уменьшаются и находятся в пределах значений 0,19…0,53 (м 3 /ч)/бар 0,5 . Перепады давления, соответственно,– 700…3551 Па. Это тоже вполне удовлетворяет требованиям.

Аналогичная ситуация и при отключении первого стояка. Пропускные способности клапанов уменьшаются и находятся в пределах значений 0,16…0,25 (м 3 /ч)/бар 0,5 . Перепады давления – 3186…3714 Па. Характеристика сети принимает положение S2 на графике (рис. 2)

Видно, что при различном разрегулировочном воздействии на систему отопления происходит изменение характеристики сопротивления системы. Однако клапаны вполне могут «отрегулировать» системы так, чтобы в каждый прибор поступало необходимое количество теплоносителя.

Стоит заметить, что такое регулирование имеет определенные рамки, связанные с перепадом давлений на клапане и фиксированным диапазоном его пропускной способности. К примеру, если бы каждый стояк состоял не из трех, а из 10 приборов и был отключен бы первый стояк, то, возможно, пропускная способность клапанов второго стояка должна была упасть до минимальных значений. При этом резко повысился бы перепад давления на них. Но этот факт необходимо доказать расчетом для конкретной системы. Если таких стояков было бы не три, а 20, то отключение одного стояка слабо бы воздействовало на гидравлику всей системы отопления. Этот фактор также обусловлен характеристикой насоса.

Литература

  1. Пырков В.В. Гидравлическое регулирование систем отопления и охлаждения. Теория и практика. Киев, 2005.
  2. Сканави А.Н., Махов Л.М. Отопление: Учебник для вузов.М., 2008.

Окончание статьи читайте в следующем номере