Что такое гальваническая развязка электрических цепей?

Гальваническая развязка (Часть 1). Виды и работа

Принцип изоляции электрической цепи от других цепей в одном устройстве называется гальваническая развязка или изоляция. С помощью такой изоляции осуществляется передача сигнала или энергии от одной электрической цепи к другой, без прямого контакта между цепями.

Гальваническая развязка дает возможность обеспечения независимости цепи сигналов, так как образуется независимый токовый контур сигнальной цепи от других контуров, в цепях обратной связи и при измерениях. Для электромагнитной совместимости гальваническая развязка является оптимальным решением, так как увеличивается точность измерений, повышается защита от помех.

Принцип действия

Чтобы понять как работает гальваническая развязка, рассмотрим, как это реализуется в конструкции трансформатора.

Первичная обмотка электрически изолирована от вторичной обмотки. Между ними нет контакта, и не возникает никакого тока, если, конечно, не считать аварийный режим с пробоем изоляции или виткового замыкания. Однако разность потенциалов в катушках может быть значительной.

В результате, если даже вторичная обмотка будет связана электрически с корпусом устройства, а значит и с землей, то все равно на корпусе не возникнет паразитных токов, которые были бы опасны для работников и оборудования.

Виды

Такая изоляция электрических цепей обеспечивается различными методами с применением всевозможных электронных элементов и деталей. Например, трансформаторы, конденсаторы и оптроны способны осуществлять передачу электрических сигналов без непосредственного контакта. Участки цепи взаимодействуют через световой поток, магнитное или электростатическое поле. Рассмотрим основные виды гальванической изоляции.

Индуктивная развязка

Для построения трансформаторной (индуктивной) развязки необходимо применить магнитоиндукционный элемент, который называется трансформатором. Он может быть как с сердечником, так и без него.

При развязке трансформаторного вида применяют трансформаторы с коэффициентом трансформации, равным единице. Первичная катушка трансформатора соединяется с источником сигнала, вторичная – с приемником. Для развязки цепей по такой схеме можно применять магнитомодуляционные устройства на основе трансформаторов.

При этом напряжение на выходе, которое имеется на вторичной обмотке трансформатора, будет напрямую зависеть от напряжения на входе устройства. При таком методе индуктивной развязки существует ряд серьезных недостатков:
  • Значительные габаритные размеры, не позволяющие изготовить компактное устройство.
  • Частотная модуляция гальванической развязки ограничивает частоту пропускания.
  • На качество выходного сигнала влияют помехи несущего входного сигнала.
  • Действие трансформаторной развязки возможно только при переменном напряжении.
Оптоэлектронная развязка

Развитие электронных и информационных технологий полупроводниковых элементов в настоящее время повышает возможности проектирования развязки с помощью оптоэлектронных узлов. Основу таких узлов развязки составляют оптроны (оптопары), которые выполнены на основе тиристоров, диодов, транзисторов и других компонентов, чувствительных к свету.

В оптической части схемы, которая связывает приемник и источник данных, носителем сигнала выступают фотоны. Нейтральность фотонов дает возможность выполнить электрическую развязку выходной и входной цепи, а также согласовать цепи с различными сопротивлениями на выходе и входе.

В оптоэлектронной развязке приемник не оказывает влияние на источник сигнала, поэтому есть возможность модулирования сигналов широкого диапазона частот. Важным преимуществом оптических пар является их компактность, которая позволяет их применение в микроэлектронике.

Оптическая пара состоит из излучателя света, среды, проводящей световой поток, и приемника света, который преобразует его в сигнал электрического тока. Сопротивление выхода и входа в оптроне очень велико, и может достигать нескольких миллионов Ом.

Принцип действия оптрона довольно простой. От светодиода выходит световой поток и направляется на фототранзистор, который воспринимает его и осуществляет дальнейшую работу в соответствии с этим световым сигналом.

Более подробно работа оптопары выглядит следующим образом. Входной сигнал поступает на светодиод, который излучает свет по световоду. Далее световой поток воспринимается фототранзистором, на выходе которого создается перепад или импульс электрического тока выхода. В результате выполняется гальваническая развязка цепей, которые связаны с одной стороны со светодиодом, а с другой – с фототранзистором.

Диодная оптопара

В этой паре источником светового потока является светодиод. Такая пара может применяться вместо ключа и работать с сигналами частотой в несколько десятков МГц.

При необходимости передачи сигнала источник подает на светодиод питание, в результате чего излучается свет, попадающий на фотодиод. Под действием света фотодиод открывается и пропускает через себя ток.

Приемник воспринимает появление тока как рабочий сигнал. Недостатком диодных оптопар является невозможность управления повышенными токами без вспомогательных элементов. Также к недостаткам можно отнести их малый КПД.

Транзисторная оптопара

Такие оптические пары имеют повышенную чувствительность, в отличие от диодных, а значит, являются более экономичными. Но их скорость реакции и наибольшая частота соединения оказывается меньше. Транзисторные оптические пары обладают незначительным сопротивлением в открытом виде, и большим в закрытом состоянии.

Управляющие токи для транзисторной пары выше выходного тока диодной пары. Транзисторные оптроны можно применять разными способами:
  • Без вывода базы.
  • С выводом базы.

Без вывода базы коллекторный ток будет напрямую зависеть от тока светодиода, но транзистор будет иметь длительное время отклика, так как цепь базы всегда открыта.

В случае с выводом базы есть возможность увеличить скорость реакции подключением вспомогательного сопротивления между эмиттером и базой транзистора. Тогда возникает эффект, при котором транзистор не переходит в состояние проводимости до тех пор, пока диодный ток не достигнет значения, необходимого для падения напряжения на резисторе.

Такая гальваническая развязка обладает некоторыми преимуществами:
  • Широкий интервал напряжений развязки (до 0,5 кВ). Это играет большую роль в проектировании систем ввода информации.
  • Гальваническая развязка может функционировать с высокой частотой, достигающей нескольких десятков МГц.
  • Компоненты схемы такой развязки имеют незначительные габаритные размеры.

При отсутствии гальванической изоляции наибольший ток, который проходит между цепями, может ограничиться только малыми электрическими сопротивлениями. В результате это приводит к возникновению выравнивающих токов, которые причиняют вред элементам электрической цепи и работника, которые случайно прикасаются к незащищенному электрооборудованию.

Гальваническая развязка

В электронике и электротехнике используется большое количество схем, в которых требуется изолировать или отделить высокое силовое напряжение от низкого напряжения управляющих цепей. За счет этого создается своеобразная защита низковольтных устройств от влияния высокого напряжения. То есть, в таких цепях уже нет течения обычного электрического тока. В таких случаях, при отсутствии тока, между устройствами возникает большое омическое сопротивление, вызывающее разрыв цепи. Данную проблему успешно решает гальваническая развязка, с помощью которой убирается гальваническая связь между устройствами.

  1. Принцип действия
  2. Трансформаторная (индуктивная) развязка
  3. Гальваническая развязка оптоэлектронного типа
  4. Принцип действия емкостной развязки
  5. Работа электромеханической развязки

Принцип действия

Гальваническая развязка в соответствии со своей функцией известна также под понятием гальванической изоляции. Данные системы обеспечивают электрическую изоляцию конкретной цепи по отношению к другим видам цепей, находящихся рядом. Применение гальванических развязок дает возможность бесконтактного управления, обеспечивает надежную защиту людей и оборудования от поражения электротоком.

Благодаря своим особенностям, гальваническая развязка обеспечивает обмен сигналами или энергией между цепями, исключая при этом непосредственный электрический контакт. С ее помощью образуется независимая сигнальная цепь за счет формирования независимого контура тока сигнальной цепи по отношению к токовым контурам других цепей.

Гальваническая изоляция используется во время измерений в силовых цепях и в цепях обратной связи. Данное техническое решение обеспечивает также электромагнитную совместимость, усиливает защиту от помех, повышает точность измерений. Используемый блок гальванической развязки на входе и выходе каждого устройства способствует улучшению их совместимости с другими приборами в условиях сложной электромагнитной обстановки.

Для того чтобы лучше представить себе, что такое гальваническая развязка, можно рассмотреть ее действие на примере стандартного промышленного электродвигателя. На производстве в большинстве случаев используется значение питающего напряжения, значительно превышающее 220 вольт и представляющее серьезную опасность для обслуживающего персонала.

В связи с этим, подача тока на обмотки и включение двигателя осуществляется с применением специальных устройств, обеспечивающих коммутацию силовых цепей. В свою очередь, коммутаторы также управляются, чаще всего кнопками включение и выключения. Именно на этом участке и требуется развязка, защищающая оператора от воздействия опасного напряжения. Оно не попадает на пульт управления, благодаря механическому взаимодействию конструктивных элементов пускателя с магнитным полем.

В настоящее время данные системы используются в различных вариантах технических решений: индуктивные, оптические, емкостные и электромеханические.

Трансформаторная (индуктивная) развязка

Для того чтобы построить индуктивную развязку, следует использовать магнитоиндукционные устройства – трансформаторы. Его конструкция может быть с сердечником или без сердечника.

Оборудование цепей гальваноразвязкой индуктивного типа осуществляется с помощью трансформаторов, у которых коэффициент трансформации составляет единицу. К источнику сигнала подключается первичная катушка, а вторичная соединяется с приемником. На этом принципе гальванические развязки трансформаторного типа служат основой для создания магнитомодуляционных устройств.

Выходное напряжение, возникающее во вторичной обмотке, напрямую связано с напряжением на входе трансформаторного устройства. В связи с этим, индуктивная развязка имеет серьезные недостатки, почему и ограничивается ее применение:

  • Невозможно изготовить компактное устройство из-за существенных габаритных размеров трансформатора.
  • Частота пропускания ограничивается частотной модуляцией самой развязки.
  • Помехи, возникающие во входном сигнале, снижают качество сигнала на выходе.
  • Подобная трансформаторная гальваническая развязка может нормально работать только при наличии переменного напряжения.

Гальваническая развязка оптоэлектронного типа

С развитием высоких технологий, использующих полупроводниковые элементы, все более широкое распространение получают БГР – блоки гальванической изоляции на основе оптоэлектронных узлов. Их основой служат оптроны, известные среди электротехников в качестве оптопар, выполненных на основе диодов, транзисторов, тиристоров и других элементов, обладающих повышенной светочувствительностью.

Общая схема оптической части, связывающая источник данных с приемником, использует в качестве сигнала нейтральные фотоны. Благодаря этому свойству, выполняется развязка цепи на входе и выходе, а также ее согласование с входными и выходными сопротивлениями.

Когда используется оптоэлектронная схема, приемник совершенно не влияет на источник сигнала, поэтому сигналы могут модулироваться в широком частотном диапазоне. Данные устройства обладают компактными размерами, поэтому они часто используются в микроэлектронике.

В конструкцию оптической пары входит световой излучатель, проводящая среда для светового потока, а также приемник, преобразующий свет в электрические сигналы. Сопротивление на входе и выходе оптрона очень большое, прядка нескольких миллионов Ом.

Вначале входной сигнал попадает на светодиод, далее в виде света он по световоду попадает на фототранзистор. На выходе устройства данная схема создает перепад или импульс выходного электрического тока. В результате цепи, связанные с двух сторон со светодиодом и фототранзистором, оказываются изолированными между собой.

Принцип действия емкостной развязки

Нередко возникает вопрос, зачем нужны различные виды развязок, в том числе и емкостная развязка. Эта схема представляет собой систему, в которой между цепями отсутствуют связи через ток, землю и другие элементы.

В этом случае передача данных электрических цепей осуществляется с помощью переменного электрического поля. Изоляция цепей происходит за счет диэлектрика, расположенного между конденсаторными пластинами. Качество развязывающего конденсатора определяется свойствами диэлектрика, размером обкладок и расстоянием между ними. Данный вид изоляции обладает повышенной энергетической эффективностью, устройства на его основе отличаются незначительными размерами, способны передавать электроэнергию и не реагируют на внешние электромагнитные поля.

Нормальная работа устройств обеспечивается разделением частоты сигнала и помех. Таким образом, емкость оказывает рабочему сигналу совсем небольшое сопротивление, а для помех создает преграду.

Работа электромеханической развязки

Помимо уже перечисленных, существует электромеханический вариант развязки. Вопрос для чего он нужен, практически не возникает, поскольку устройства на этой основе широко применяются в электротехнике.

Основой таких приборов служит реле, соединяющее электрические цепи в результате каких-либо изменений входных данных. В итоге они оказываются развязанными, а сама система получила название релейной.

Наиболее ярким примером является схема электромагнитного реле. Эти приборы нужны для защиты электроустановок и в различных автоматических системах. Они разделяются на реле постоянного и переменного тока. Основным элементом считается якорь, которые под действием электромагнита и пружины осуществляет замыкание и размыкание контактов.

Принцип работы гальванического элемента

Что такое гальванический элемент

Диммер – что это, принцип действия светорегулятора, преимущества и недостатки, область применения, схема подключения устройства

Импульсный блок питания

Принцип действия поляризованного реле

Трансформаторы тока назначение и принцип действия

Гальваническая развязка. Кто, если не оптрон?


Есть в электронике такое понятие как гальваническая развязка. Её классическое определение — передача энергии или сигнала между электрическими цепями без электрического контакта. Если вы новичок, то эта формулировка покажется очень общей и даже загадочной. Если же вы имеете инженерный опыт или просто хорошо помните физику, то скорее всего уже подумали про трансформаторы и оптроны.

Статья под катом посвящена различным способам гальванической развязки цифровых сигналов. Расскажем зачем оно вообще нужно и как производители реализуют изоляционный барьер «внутри» современных микросхем.

Речь, как уже сказано, пойдет о изоляции цифровых сигналов. Далее по тексту под гальванической развязкой будем понимать передачу информационного сигнала между двумя независимыми электрическими цепями.

Зачем оно нужно

Существует три основные задачи, которые решаются развязкой цифрового сигнала.

Первой приходит в голову защита от высоких напряжений. Действительно, обеспечение гальванической развязки — это требование, которое предъявляет техника безопасности к большинству электроприборов.

Пусть микроконтроллер, который имеет, естественно, небольшое напряжение питания, задает управляющие сигналы для силового транзистора или другого устройства высокого напряжения. Это более чем распространенная задача. Если между драйвером, который увеличивает управляющий сигнал по мощности и напряжению, и управляющим устройством не окажется изоляции, то микроконтроллер рискует попросту сгореть. К тому же, с цепями управления как правило связаны устройства ввода-вывода, а значит и человек, нажимающий кнопку «включить», легко может замкнуть цепь и получить удар в несколько сотен вольт.

Итак, гальваническая развязка сигнала служит для защиты человека и техники.

Не менее популярным является использование микросхем с изоляционным барьером для сопряжения электрических цепей с разными напряжениями питания. Тут всё просто: «электрической связи» между цепями нет, поэтому сигнал логические уровни информационного сигнала на входе и выходе микросхемы будут соответствовать питанию на «входной» и «выходной» цепях соответственно.

Гальваническая развязка также используется для повышения помехоустойчивости систем. Одним из основных источников помех в радиоэлектронной аппаратуре является так называемый общий провод, часто это корпус устройства. При передаче информации без гальванической развязки общий провод обеспечивает необходимый для передачи информационного сигнала общий потенциал передатчика и приемника. Поскольку обычно общий провод служит одним из полюсов питания, подключение к нему разных электронных устройств, в особенности силовых, приводит к возникновению кратковременных импульсных помех. Они исключаются при замене «электрического соединения» на соединение через изоляционный барьер.

Как оно работает

Традиционно гальваническая развязка строится на двух элементах — трансформаторах и оптронах. Если опустить детали, то первые применяются для аналоговых сигналов, а вторые — для цифровых. Мы рассматриваем только второй случай, поэтому имеет смысл напомнить читателю о том кто такой оптрон.

Для передачи сигнала без электрического контакта используется пара из излучателя света (чаще всего светодиод) и фотодетектора. Электрический сигнал на входе преобразуется в «световые импульсы», проходит через светопропускающий слой, принимается фотодетектором и обратно преобразуется в электрический сигнал.

Оптронная развязка заслужила огромную популярность и несколько десятилетий являлась единственной технологией развязки цифровых сигналов. Однако, с развитием полупроводниковой промышленности, с интеграцией всего и вся, появились микросхемы, реализующие изоляционный барьер за счет других, более современных технологий.

Цифровые изоляторы — это микросхемы, обеспечивающие один или несколько изолированных каналов, каждый из которых «обгоняет» оптрон по скорости и точности передачи сигнала, по уровню устойчивости к помехам и, чаще всего, по стоимости в пересчете на канал.

Изоляционный барьер цифровых изоляторов изготавливается по различным технологиям. Небезызвестная компания Analog Devices в цифровых изоляторах ADUM в качестве барьера использует импульсный трансформатор. Внутри корпуса микросхемы расположено два кристалла и, выполненный отдельно на полиимидной пленке, импульсный трансформатор. Кристалл-передатчик по фронту информационного сигнала формирует два коротких импульса, а по спаду информационного сигнала — один импульс. Импульсный трансформатор позволяет с небольшой задержкой получить на кристалле-передатчике импульсы по которым выполняется обратное преобразование.

Описанная технология успешно применяется при реализации гальванической развязки, во многом превосходит оптроны, однако имеет ряд недостатков, связанных с чувствительностью трансформатора к помехам и риску искажений при работе с короткими входными импульсами.

Гораздо более высокий уровень устойчивости к помехам обеспечивается в микросхемах, где изоляционный барьер реализуется на емкостях. Использование конденсаторов позволяет исключить связь по постоянному току между приемником и передатчиком, что в сигнальных цепях эквивалентно гальванической развязке.

Преимущества емкостной развязки заключаются в высокой энергетической эффективности, малых габаритах и устойчивости к внешним магнитным полям. Это позволяет создавать недорогие интегральные изоляторы с высокими показателями надежности. Они выпускаются двумя компаниями — Texas Instruments и Silicon Labs. Эти фирмы используют различные технологии создания канала, однако в обоих случаях в качестве диэлектрика используется диоксид кремния. Этот материал имеет высокую электрическую прочность и уже несколько десятилетий используется при производстве микросхем. Как следствие, SiO2 легко интегрируется в кристалл, причем для обеспечения напряжения изоляции величиной в несколько киловольт достаточно слоя диэлектрика толщиной в несколько микрометров.

На одном (у Texas Instruments) или на обоих (у Silicon Labs) кристаллах, которые находятся в корпусе цифрового изолятора, расположены площадки-конденсаторы. Кристаллы соединяются через эти площадки, таким образом информационный сигнал проходит от приемника к передатчику через изоляционный барьер.

Хотя Texas Instruments и Silicon Labs используют очень похожие технологии интеграции емкостного барьера на кристалл, они используют совершенно разные принципы передачи информационного сигнала.

Каждый изолированный канал у Texas Instruments представляет собой относительно сложную схему.

Рассмотрим её «нижнюю половину». Информационный сигнал подается на RC-цепочки, с которых снимаются короткие импульсы по фронту и спаду входного сигнала, по этим импульсам сигнал восстанавливается. Такой способ прохождения емкостного барьера не подходит для медленноменяющихся (низкочастотных) сигналов. Производитель решает эту проблему дублированием каналов — «нижняя половина» схемы является высокочастотным каналом и предназначается для сигналов от 100 Кбит/сек.

Сигналы с частотой ниже 100 Кбит/сек обрабатываются на «верхней половине» схемы. Входной сигнал подвергается предварительной ШИМ-модуляции с большой тактовой частотой, модулированный сигнал подается на изоляционный барьер, по импульсам с RC-цепочек сигнал восстанавливается и в дальнейшем демодулируется.
Схема принятия решения на выходе изолированного канала «решает» с какой «половины» следует подавать сигнал на выход микросхемы.

Как видно на схеме канала изолятора Texas Instruments, и в низкочастотном, и в высокочастотном каналах используется дифференциальная передача сигнала. Напомню читателю её суть.

Дифференциальная передача — это простой и действенный способ защиты от синфазных помех. Входной сигнал на стороне передатчика «разделяется» на два инверсных друг-другу сигнала V+ и V-, на которые синфазные помехи разной природы влияют одинаково. Приемник осуществляет вычитание сигналов и в результате помеха Vсп исключается.

Дифференциальная передача также используется в цифровых изоляторах от Silicon Labs. Эти микросхемы имеют более простую и надежную структуру. Для прохождения через емкостный барьер входной сигнал подвергается высокочастотной OOK (On-Off Keying) модуляции. Другими словами, «единица» информационного сигнала кодируется наличием высокочастотного сигнала, а «ноль» — отсутствием высокочастотного сигнала. Модулированный сигнал проходит без искажений через пару емкостей и восстанавливается на стороне передатчика.

Цифровые изоляторы Silicon Labs превосходят микросхемы ADUM-ы по большинству ключевых характеристик. Микросхемы от TI обеспечивают примерно такое же качество работы как Silicon Labs, но в отдельных случаях уступают в точности передачи сигнала.

Где оно работает

Хочется добавить пару слов о том в каких микросхемах используется изоляционный барьер.
Первыми стоит назвать цифровые изоляторы. Они представляют собой несколько изолированных цифровых каналов, объединенных в одном корпусе. Выпускаются микросхемы с различной конфигурацией входных и выходных однонаправленных каналов, изоляторы с двунаправленными каналами (используются для развязки шинных интерфейсов), изоляторы со встроенным DC/DC-контроллером для изоляции питания.

Гальваническая развязка (часть 1). виды и работа

Применение

Без использования развязки предельный ток, протекающий между цепями, ограничен только электрическими сопротивлениями, которые обычно относительно малы. В результате возможно протекание выравнивающих токов и других токов, способных повреждать компоненты цепи или поражать людей, прикасающихся к оборудованию, имеющему электрический контакт с цепью. Прибор, обеспечивающий развязку, искусственно ограничивает передачу энергии из одной цепи в другую. В качестве такого прибора может использоваться разделительный трансформатор или оптрон. В обоих случаях цепи оказываются электрически разделёнными, но между ними возможна передача энергии или сигналов.

Работа электромеханической развязки

Помимо уже перечисленных, существует электромеханический вариант развязки. Вопрос для чего он нужен, практически не возникает, поскольку устройства на этой основе широко применяются в электротехнике.

Основой таких приборов служит реле, соединяющее электрические цепи в результате каких-либо изменений входных данных. В итоге они оказываются развязанными, а сама система получила название релейной.

Наиболее ярким примером является схема электромагнитного реле. Эти приборы нужны для защиты электроустановок и в различных автоматических системах. Они разделяются на реле постоянного и переменного тока. Основным элементом считается якорь, которые под действием электромагнита и пружины осуществляет замыкание и размыкание контактов.

Принцип работы гальванического элемента

Что такое гальванический элемент

Импульсный блок питания

Принцип действия поляризованного реле

Трансформаторы тока назначение и принцип действия

Принцип действия емкостной развязки

Нередко возникает вопрос, зачем нужны различные виды развязок, в том числе и емкостная развязка. Эта схема представляет собой систему, в которой между цепями отсутствуют связи через ток, землю и другие элементы.

В этом случае передача данных электрических цепей осуществляется с помощью переменного электрического поля. Изоляция цепей происходит за счет диэлектрика, расположенного между конденсаторными пластинами. Качество развязывающего конденсатора определяется свойствами диэлектрика, размером обкладок и расстоянием между ними. Данный вид изоляции обладает повышенной энергетической эффективностью, устройства на его основе отличаются незначительными размерами, способны передавать электроэнергию и не реагируют на внешние электромагнитные поля.

Нормальная работа устройств обеспечивается разделением частоты сигнала и помех. Таким образом, емкость оказывает рабочему сигналу совсем небольшое сопротивление, а для помех создает преграду.

Гальваническая развязка оптоэлектронного типа

С развитием высоких технологий, использующих полупроводниковые элементы, все более широкое распространение получают БГР – блоки гальванической изоляции на основе оптоэлектронных узлов. Их основой служат оптроны, известные среди электротехников в качестве оптопар, выполненных на основе диодов, транзисторов, тиристоров и других элементов, обладающих повышенной светочувствительностью.

Общая схема оптической части, связывающая источник данных с приемником, использует в качестве сигнала нейтральные фотоны. Благодаря этому свойству, выполняется развязка цепи на входе и выходе, а также ее согласование с входными и выходными сопротивлениями.

Когда используется оптоэлектронная схема, приемник совершенно не влияет на источник сигнала, поэтому сигналы могут модулироваться в широком частотном диапазоне. Данные устройства обладают компактными размерами, поэтому они часто используются в микроэлектронике.

В конструкцию оптической пары входит световой излучатель, проводящая среда для светового потока, а также приемник, преобразующий свет в электрические сигналы. Сопротивление на входе и выходе оптрона очень большое, прядка нескольких миллионов Ом.

Вначале входной сигнал попадает на светодиод, далее в виде света он по световоду попадает на фототранзистор. На выходе устройства данная схема создает перепад или импульс выходного электрического тока. В результате цепи, связанные с двух сторон со светодиодом и фототранзистором, оказываются изолированными между собой.

Трансформаторная (индуктивная) развязка

Для того чтобы построить индуктивную развязку, следует использовать магнитоиндукционные устройства – трансформаторы. Его конструкция может быть с сердечником или без сердечника.

Оборудование цепей гальваноразвязкой индуктивного типа осуществляется с помощью трансформаторов, у которых коэффициент трансформации составляет единицу. К источнику сигнала подключается первичная катушка, а вторичная соединяется с приемником. На этом принципе гальванические развязки трансформаторного типа служат основой для создания магнитомодуляционных устройств.

Выходное напряжение, возникающее во вторичной обмотке, напрямую связано с напряжением на входе трансформаторного устройства. В связи с этим, индуктивная развязка имеет серьезные недостатки, почему и ограничивается ее применение:

  • Невозможно изготовить компактное устройство из-за существенных габаритных размеров трансформатора.
  • Частота пропускания ограничивается частотной модуляцией самой развязки.
  • Помехи, возникающие во входном сигнале, снижают качество сигнала на выходе.
  • Подобная трансформаторная гальваническая развязка может нормально работать только при наличии переменного напряжения.

Принцип действия

Гальваническая развязка в соответствии со своей функцией известна также под понятием гальванической изоляции. Данные системы обеспечивают электрическую изоляцию конкретной цепи по отношению к другим видам цепей, находящихся рядом. Применение гальванических развязок дает возможность бесконтактного управления, обеспечивает надежную защиту людей и оборудования от поражения электротоком.

Благодаря своим особенностям, гальваническая развязка обеспечивает обмен сигналами или энергией между цепями, исключая при этом непосредственный электрический контакт. С ее помощью образуется независимая сигнальная цепь за счет формирования независимого контура тока сигнальной цепи по отношению к токовым контурам других цепей.

Для того чтобы лучше представить себе, что такое гальваническая развязка, можно рассмотреть ее действие на примере стандартного промышленного электродвигателя. На производстве в большинстве случаев используется значение питающего напряжения, значительно превышающее 220 вольт и представляющее серьезную опасность для обслуживающего персонала.

В связи с этим, подача тока на обмотки и включение двигателя осуществляется с применением специальных устройств, обеспечивающих коммутацию силовых цепей. В свою очередь, коммутаторы также управляются, чаще всего кнопками включение и выключения. Именно на этом участке и требуется развязка, защищающая оператора от воздействия опасного напряжения. Оно не попадает на пульт управления, благодаря механическому взаимодействию конструктивных элементов пускателя с магнитным полем.

В настоящее время данные системы используются в различных вариантах технических решений: индуктивные, оптические, емкостные и электромеханические.

Гальваническая развязка — это просто

Многие современные электронные устройства сегодня требуют гальванической развязки между двумя или более частями оборудования или между двумя критическими секциями одного продукта или системы. Если вы не делали этого раньше, вам придется изучить довольно много материала для понимания основ гальванической развязки, почему она используется, и знакомство с возможными способами ее реализации.

В этой статье дается определение гальванической развязки, объясняются ее преимущества, а затем резюмируются наиболее распространенные способы ее реализации. И это открывает новый подход к обеспечению гальванической развязки с помощью специальных интегральных схем (ИС).

Что такое гальваническая развязка?

Гальваническая развязка — это процесс проектирования электрического оборудования или систем с отдельными источниками питания таким образом, чтобы они не обменивались энергией или никак электрически не взаимодействовали. Идея состоит в том, чтобы поддерживать питание постоянного (и / или переменного тока) отдельно и независимо. Одна система электроснабжения не должна влиять на другую. В то же время, как правило, необходимо полностью изолированно передавать сигналы мониторинга и данные управления между ними.

Изоляция питания достигается за счет того, что две физические секции находятся далеко друг от друга. И это обычно реализуется НЕ подключением заземляющих соединений двух систем. Это устраняет контуры заземления и уменьшает или, по крайней мере, сводит к минимуму любой перенос шума. Когда используются как высоковольтные, так и низковольтные подсистемы, такая физическая изоляция и изоляция заземления также помогает защитить пользователей и специалистов по обслуживанию от ударов электрическим током, низковольтные цепи — от высокого напряжения, а в некоторых случаях защищает и от молнии.

Примеры оборудования, требующего гальванической развязки, включают программируемые логические контроллеры (ПЛК) в промышленных инструментах и оборудовании, источники бесперебойного питания (ИБП), электроприводы, промышленные роботы, зарядные устройства для аккумуляторов, преобразователи частоты / инверторы и иногда DC-DC преобразователи. Не забываем о постоянно растущем сегменте автомобильных приложениях.

Гальваническая развязка

Для реализации гальванической развязки используется широкий спектр методов. Возможно, самый старый и самый эффективный — это трансформатор. Он позволяет передавать данные, сообщения и коды посредством магнитных полей между первичной и вторичной обмотками. Между первичной и вторичной обмотками НЕТ прямой электрической связи.

На рисунке ниже показан пример базового источника питания, используемого в системе, требующей изоляции. SN6501-Q1 — это генератор модулирующих импульсов, который вырабатывает сигнал переключения для импульсного трансформатора. Трансформатор обеспечивает соотношение витков для получения желаемого выходного напряжения и идеальной развязки, обеспечиваемой только магнитной связью между входом и выходом. Регулятор с малым падением напряжения (LDO) фильтрует выпрямленный сигнал и устанавливает желаемое выходное напряжение.

Оптопары или оптоизоляторы — еще одно почти идеальное устройство для передачи данных с допустимой скоростью. Поток данных о напряжении управляет светодиодом внутри корпуса оптопары. Фототранзистор улавливает свет на расстоянии нескольких миллиметров. Транзисторный выход полностью изолирован от входа.

Один из лучших способов изоляции — использование конденсаторов. Они блокируют постоянный ток, но пропускают переменный ток, что делает их и их варианты чрезвычайно эффективными. Другие устройства, участвующие в создании гальванической развязки, — это специальные компоненты, такие как датчики на эффекте Холла и даже механические реле.

Современная гальваническая развязка

В наши дни лучший способ обеспечить необходимую гальваническую развязку — это использовать компоненты, разработанные специально для этой цели. Примеры включают специальные усилители и аналого-цифровые преобразователи (АЦП), используемые для отправки изолированных данных измерения тока и напряжения, когда это необходимо системе.

Дифференциальные усилители контролируют напряжение на чувствительном резисторе для получения значения тока. Обычно для этого приложения требуются два источника питания (рисунок ниже слева). Однако наличие второго источника питания делает продукт больше, тяжелее и дороже.

Texas Instruments разработала линейку усилителей и АЦП с однополярным питанием, чтобы решить эту проблему. Изолированный усилитель AMC3301 (рисунок выше справа) включает полностью интегрированный преобразователь постоянного тока в постоянный (DC-DC) для подачи второго напряжения питания. Изоляция обеспечивается емкостной связью внутри интегральной схемы. AMC3301 соответствует правилам безопасности высоковольтной изоляции для сертификации UL 1577 до 4250 В среднеквадратического значения DIN VDEV 0884-11 для пикового напряжения до 6000 В.

Для обеспечения изолированных данных измерений и управления можно использовать два типа изолирующих устройств — изолированный усилитель и изолированный модулятор. Оба являются типами с однополярным питанием и каждый содержит внутренний дельта-сигма (ΔΣ) АЦП.

Контролируемый аналоговый сигнал отправляется на микросхему, усиливается, а затем оцифровывается АЦП. АЦП генерирует последовательный поток битов, который проходит через емкостный изолирующий барьер на кристалле. Этот последовательный поток битов затем отправляется на фильтр нижних частот, который вырабатывает напряжение, пропорциональное входному сигналу. В этот момент восстановленный сигнал постоянного тока может быть снова оцифрован в другом АЦП, возможно, в обычном системном микроконтроллере.

В качестве другого варианта можно использовать изолированный модулятор, такой как AMC1305 / 06 от TI. Он принимает отслеживаемый сигнал тока или напряжения и усиливает его перед оцифровкой в более быстром ΔΣ АЦП. АЦП посылает свой сигнал через внутренний емкостный изолирующий барьер на выход. Этот сигнал представляет собой серию битов, представляющих напряжение внутри устройства. Внешний фильтр нижних частот генерирует пропорциональный аналоговый сигнал, который снова может быть оцифрован для цифровой обработки сигнала.

Хотя и изолированные усилители, и модуляторы действительно обеспечивают хорошие характеристики, изолирующие модуляторы, как правило, являются лучшей альтернативой. Они обладают превосходным соотношением сигнал / шум, большей точностью и меньшей задержкой.

Гальваническая развязка 101

Для улучшения знаний и понимания гальванической развязки, вам следует рассмотреть эталонный прототип TI TIDA-010065. Эталонный прототип представляет собой упрощенную архитектуру для создания изолированного источника питания для изолированных усилителей, которые измеряют изолированные напряжения и токи. Встроенная цифровая диагностика повышает надежность и производительность системы. Это отличная платформа для самообучения и изучения тонкостей гальванической развязки.

Добавить комментарий